Skip to main content

Triple-Wideband Antenna for RF Energy Harvesting

  • Conference paper
  • First Online:
Communication, Networks and Computing (CNC 2022)

Abstract

The article presents a triple-wideband antenna for microwave energy harvesting (EH) applications. The antenna works from 1.1 GHz to 1.4 GHz with 300 MHz of bandwidth, 1.5 GHz to 2.2 GHz with 700 MHz of frequency, and 2.4 GHz to 2.67 GHz with 270 MHz of bandwidth. The proposed antenna is capable of receiving microwave energy from the 1.2 GHz band, the GSM 1800 MHz band, the UTMS 2100 MHz band, and the ISM 2450 MHz band. The intended antenna is analysed for various parameters in these frequency bands. Radiation efficiency at 1.25 GHz is 99%, at 1.8 GHz is 98% at 2.1 GHz is 96%, and at 2.45 GHz is 73%. The antenna gain achieved at these frequencies is 2.5 dBi, 3.6 dBi, 4.4 dBi, and 2 dBi, respectively. The VSWR is less than 2 in the entire band of operation. The impedance of the antenna is 49 Ω at 1.25 GHz, 47 Ω at 1.8 GHz, 51 Ω at 2.1 GHz, and 58 Ω at 2.45 GHz. Due to these characteristics, the intended antenna is suitable for microwave energy harvesting applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ojha, S.S., Singhal, P.K., Thakare, V.V.: Dual-band rectenna system for biomedical wireless applications. Measur.: Sens. 24, 100532 (2022)

    Google Scholar 

  2. Joseph, S.D., Huang, Yi., Hsu, S.S.. H.: Transmission lines-based impedance matching technique for broadband rectifier. IEEE Access 9, 4665–4672 (2021)

    Article  Google Scholar 

  3. Vyas, R.J., et al.: E-WEHP: a batteryless embedded sensor-platform wirelessly powered from ambient digital-TV signals. IEEE Trans. Microw. Theory Tech. 61(6), 2491–2505 (2013)

    Article  Google Scholar 

  4. Song, C., et al.: A high-efficiency broadband rectenna for ambient wireless energy harvesting. IEEE Trans. Antennas Propag. 63(8), 3486–3495 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ho, D.-K., et al.: Dual-band rectenna for ambient RF energy harvesting at GSM 900 MHz and 1800 MHz. In: 2016 IEEE International Conference on Sustainable Energy Technologies (ICSET). IEEE (2016)

    Google Scholar 

  6. Gajanan, P., et al.: A dual-band microwave energy harvesting rectenna system for WiFi sources. In: 2019 IEEE Indian Conference on Antennas and Propogation (InCAP). IEEE (2019)

    Google Scholar 

  7. Chiluveru, A., Akashe, S., Ojha, S.S.: Design of RF energy harvesting circuit at 900 MHz for low-powered DC applications. In: Zhang, Y.-D., Senjyu, T., So–In, C., Joshi, A. (eds.) Smart Trends in Computing and Communications: Proceedings of SmartCom 2020, pp. 401–410. Springer Singapore, Singapore (2021). https://doi.org/10.1007/978-981-15-5224-3_39

    Chapter  Google Scholar 

  8. Chandravanshi, S., Sarma, S.S., Akhtar, M.J.: Design of triple band differential rectenna for RF energy harvesting. IEEE Trans. Antennas Propagat. 66(6), 2716–2726 (2018)

    Article  Google Scholar 

  9. Shen, S., Chiu, C.-Y., Murch, R.D.: A dual-port triple-band L-probe microstrip patch rectenna for ambient RF energy harvesting. IEEE Antennas Wirel. Propag. Lett. 16, 3071–3074 (2017)

    Article  Google Scholar 

  10. Song, C., Huang, Y., Zhou, J., Carter, P.: Improved ultrawideband rectennas using hybrid resistance compression technique. IEEE Trans. Antennas Propagat. 65(4), 2057–2062 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Zhi-Xia, D., Bo, S.F., Cao, Y.F., Jun-Hui, O., Zhang, X.Y.: Broadband circularly polarized rectenna with wide dynamic-power-range for efficient wireless power transfer. IEEE Access 8, 80561–80571 (2020)

    Article  Google Scholar 

  12. He, Z., Liu, C.: A compact high-efficiency broadband rectifier with a wide dynamic range of input power for energy harvesting. IEEE Microwave Wirel. Compon. Lett. 30(4), 433–436 (2020)

    Article  MathSciNet  Google Scholar 

  13. Ojha, S.S., et al.: 2-GHz dual diode dipole rectenna for wireless power transmission. Int. J. Microw. Opt. Technol. 8(2), 86–92 (2013)

    MathSciNet  Google Scholar 

  14. Ping, L., Song, C., Huang, K.M.: Ultra-wideband rectenna using complementary resonant structure for microwave power transmission and energy harvesting. IEEE Trans. Microwave Theory Techn. 69(7), 3452–3462 (2021)

    Article  Google Scholar 

  15. Agarwal, A., et al.: Design of CPW-fed printed rectangular monopole antenna for wideband dual-frequency applications. Int. J. Innov. Appl. Stud. 3(3), 758–764 (2013)

    Google Scholar 

  16. Agarwal, A., Singhal, P.K.: Design and analysis of printed circular disc monopole antenna for L-band frequency applications. Int. J. Microw. Opt. Technol. 8, 138–144 (2013)

    Google Scholar 

  17. Agarwal, A., et al.: Analyse the performance of planar rectangular monopole antenna on modify ground Plane for L-band applications. J. Global Res. Electron. Commun. 1(1) (2012)

    Google Scholar 

  18. Arrawatia, M., Baghini, M., Kumar, G.: Broadband bent triangular omnidirectional antenna for RF energy harvesting. IEEE Antennas Wirel. Propag. Lett. 15, 1–1 (2015)

    Article  MATH  Google Scholar 

  19. Gao, S., et al.: A broad-band dual-polarized microstrip patch antenna with aperture coupling. IEEE Trans. Antennas Propag. 51(4), 898–900 (2003)

    Article  Google Scholar 

  20. Bais, A., Ojha, S.S.: Design and development of UWB antenna using CNT composite for RFID applications. In: 2016 Symposium on Colossal Data Analysis and Networking (CDAN). IEEE (2016)

    Google Scholar 

  21. Deng, C., Li, Y., Zhang, Z., Feng, Z.: A wideband isotropic radiated planar antenna using sequential rotated L-shaped monopoles. IEEE Trans. Antennas Propagat. 62(3), 1461–1464 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shailendra Singh Ojha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ojha, S.S., Singhal, P.K., Thakare, V.V. (2023). Triple-Wideband Antenna for RF Energy Harvesting. In: Tomar, R.S., et al. Communication, Networks and Computing. CNC 2022. Communications in Computer and Information Science, vol 1893. Springer, Cham. https://doi.org/10.1007/978-3-031-43140-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43140-1_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43139-5

  • Online ISBN: 978-3-031-43140-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics