Skip to main content

Wearable Vibration Device to Assist with Ambulation for the Visually Impaired

  • Conference paper
  • First Online:
Bio-inspired Information and Communications Technologies (BICT 2023)

Abstract

People with visual impairment have increased difficulty in performing activities of daily living, such as walking without bumping into obstacles. Many assistive technologies are used to help with ambulation as one walks forward, such as a white walking cane or a service dog. These have proven to be of tremendous help, but the cane may miss suspended objects not touching the ground, and service dogs are not available to all who need them. Further assistive technologies continue to be developed and tested. In nature, those without visual acuity tend to obtain much information from their environment through the other senses, such as hearing or tactile touch. This study is exploring the mapping of obstacle detection to tactile vibration motors on the skin. Ultrasonic sensors were used to detect obstacles in the forward direction where the user would be walking, and calculate the distance. The distance was mapped to a vibration pattern, with the pattern being more intense for closer obstacles. A prototype was developed and had several tests run. Obstacle detection and distance were useful up to 3 m. The functional field of view was 10° to 30° from centerline, but became more narrow as the distance increased and for harder to detect obstacles. The distance was mapped to 3 different vibration patterns, and human subjects were able to distinguish the patterns in a consistent manner. The prototype shows promise, but more testing and development would be required toward widespread application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fernandes, H., Costa, P., Filipe, V., Paredes, H., Barroso, J.: A review of assistive spatial orientation and navigation technologies for the visually impaired. Univ. Access Inf. Soc. 18(1), 155–168 (2019)

    Article  Google Scholar 

  2. Buchs, G., Simon, N., Maidenbaum, S., Amedi, A.: Waist-up protection for blind individuals using the EyeCane as a primary and secondary mobility aid. Restor. Neurol. Neurosci. 35(2), 225–235 (2017)

    PubMed  PubMed Central  Google Scholar 

  3. Froneman, T., van den Heever, D., Dellimore, K.: Development of a wearable support system to aid the visually impaired in independent mobilization and navigation. In: Presented at the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, pp 783–786 (2017)

    Google Scholar 

  4. DeGuglielmo, N., Lobo, C., Moriarty, E.J., Ma, G., Dow, D.E.: Haptic vibrations for hearing impaired to experience aspects of live music. In: Nakano, T. (eds.) Bio-Inspired Information and Communications Technologies. BICT 2021. LNICST, vol. 403, pp. 71–86 . Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92163-7_7

  5. Poppinga, B., Magnusson, C., Pielot, M., Rassmus-Gröhn, K.: TouchOver map: audio-tactile exploration of interactive maps. In: Presented at the Proceedings of the 13th International Conference on Human Computer Interaction with Mobile Devices and Services, pp. 545–550 (2011)

    Google Scholar 

  6. Muender, T., Bonfert, M., Reinschluessel, A.V., Malaka, R., Döring, T.: Haptic fidelity framework: defining the factors of realistic haptic feedback for virtual reality. In: Presented at the CHI Conference on Human Factors in Computing Systems, pp. 1–17 (2022)

    Google Scholar 

  7. Tennison, J.L., Uesbeck, P.M., Giudice, N.A., Stefik, A., Smith, D.W., Gorlewicz, J.L.: Establishing vibration-based tactile line profiles for use in multimodal graphics. ACM Trans. Appl. Percept. (TAP). 17(2), 1–14 (2020)

    Article  Google Scholar 

  8. Porquis, L.B., Finocchietti, S., Zini, G., Cappagli, G., Gori, M., Baud-Bovy, G.: ABBI: a wearable device for improving spatial cognition in visually-impaired children. In: Presented at the 2017 IEEE Biomedical Circuits and Systems Conference (BioCAS), pp 1–4. IEEE (2017)

    Google Scholar 

  9. Shiizu, Y., Hirahara, Y., Yanashima, K., Magatani, K.: The development of a white cane which navigates the visually impaired. In: Presented at the 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp 5005–5008. IEEE (2007)

    Google Scholar 

  10. Elmannai, W., Elleithy, K.: Sensor-based assistive devices for visually-impaired people: current status, challenges, and future directions. Sensors 17(3), 565 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas E. Dow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dow, D.E., Robbins, J.J., Roberts, K.C., Bannish, S.G., Cote, B.J. (2023). Wearable Vibration Device to Assist with Ambulation for the Visually Impaired. In: Chen, Y., Yao, D., Nakano, T. (eds) Bio-inspired Information and Communications Technologies. BICT 2023. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 512. Springer, Cham. https://doi.org/10.1007/978-3-031-43135-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43135-7_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43134-0

  • Online ISBN: 978-3-031-43135-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics