Skip to main content

A Novel Durable Fat Tissue Phantom for Microwave Based Medical Monitoring Applications

  • Conference paper
  • First Online:
Bio-inspired Information and Communications Technologies (BICT 2023)

Abstract

Human tissue mimicking phantoms allow development of realistic emulations platforms which are essential for design of several biomedical monitoring and diagnosis systems. This first aim of this paper is to present a novel and durable fat tissue phantom for lower microwave frequency ranges 2.5–10 GHz. The phantom is developed from the liquid propylene glycol (pure) which we found to have similar dielectric properties as the fat tissue and hence, it is suitable to be used as liquid fat phantom. Development steps of solid fat phantoms with different trials are presented to provide insight how each ingredient affect on the dielelctric properties of the mixture. Additionally, phantom’s stability over time in terms of dielectric and physical properties are evaluated. The second main aim of this paper is to present a novel approach to verify the feasibility and reliability of phantoms in practical scenarios with tissue layer model simulations. In the simulations, the antenna reflection coefficients are calculated with tissue layer models in which the dielectric properties of the fat tissue layer is varied between the proposed prolyne glycol -based fat phantoms as well as real human fat tissue values. Our goal is to show how small differences in the dielectric properties of the phantoms affect on a practical scenario which is based on antenna impedance measurements. The dielectric properties of the proposed fat phantom have very good correspondence with real fat tissue especially in the range of 5 GHz-10 GHz. Also, at lower ultrawide band (3.1–5 GHz), the difference in dielectric properties is minor. The layer model simulations show that the differences in dielectric properties do not have significant effect when modelling the practical scenarios in the frequency ranges targeted for medical applications. Hence the proposed liquid and solid fat phantoms are suitable to be used in the emulation platforms of biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vrba, D., Vrba, J., Fiser, O., Cumana, J., Babak, M., Vrba Senior, J.: Applications of microwaves in medicine and biology. Recent Microwave Technol. (2022). https://doi.org/10.5772/intechopen.105492

    Article  Google Scholar 

  2. Khan, S., Saied, I.M., Ratnarajah, T., Arslan, T.: Evaluation of unobtrusive microwave sensors in healthcare 4.0-toward the creation of digital-twin model. Sensors (Basel). 22(21), 8519 (2022). https://doi.org/10.3390/s22218519. PMID: 36366218; PMCID: PMC9657877

  3. Li, C., Tofighi, M., Schreurs, D., Horng, T.: Principles and Applications of RF/Microwave in Healthcare and Biosensing, Elsevier,1st Edition (2016)

    Google Scholar 

  4. Kiourti, A., et al.: Next-generation healthcare: enabling technologies for emerging bioelectromagnetics applications. IEEE Open J. Antennas Propag. 3, 363–390 (2022). https://doi.org/10.1109/OJAP.2022.3162110

    Article  Google Scholar 

  5. Rafique, U., Pisa, S., Cicchetti, R., Testa, O., Cavagnaro, M.: Ultra-wideband antennas for biomedical imaging applications: a survey. Sensors. 22(9), 3230 (2022). https://doi.org/10.3390/s22093230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Särestöniemi, M., Reponen, J., Myllymäki, S., Myllylä, T.: Remote diagnostics and monitoring using microwave technique – improving healthcare in rural areas and in exceptional situations, under review for FinJeHew journal (2023)

    Google Scholar 

  7. Costanzo, S., Cioffi, V., Qureshi, A.M., Borgia, A.: Gel-Like human mimicking phantoms: realization procedure, dielectric characterization and experimental validations on microwave wearable body sensors. Biosensors (Basel). 11(4), 111 (2021). https://doi.org/10.3390/bios11040111.PMID:33917777;PMCID:PMC8068187

    Article  PubMed  PubMed Central  Google Scholar 

  8. Garrett, J., Fear, E.: Stable and flexible materials to mimic the dielectric properties of human soft tissues. IEEE Antennas Wirel. Propag. Lett. 13, 599–602 (2014). https://doi.org/10.1109/LAWP.2014.2312925

    Article  Google Scholar 

  9. Castelló-Palacios, S., Garcia-Pardo, C., Fornes-Leal, A., Cardona, N., Vallés-Lluch, A.: Tailor-made tissue phantoms based on acetonitrile solutions for microwave applications up to 18 GHz. IEEE Trans. Microw. Theory Tech. 64(11), 3987–3994 (2016). https://doi.org/10.1109/TMTT.2016.2608890

    Article  Google Scholar 

  10. Pollacco, D.A., Conti, M.C., Farrugia, L., Wismayer, P.S., Farina, L., Sammut, C.V.: Dielectric properties of muscle and adipose tissue-mimicking solutions for microwave medical imaging applications. Phys. Med. Biol. 64(9), 095009 (2019). https://doi.org/10.1088/1361-6560/ab0dda. PMID: 30844769

    Article  CAS  PubMed  Google Scholar 

  11. Di Meo, S., et al.: Tissue-mimicking materials for breast phantoms up to 50 GHz. Phys Med Biol. 64(5), 055006 (2019). https://doi.org/10.1088/1361-6560/aafeec. PMID: 30650384

    Article  CAS  PubMed  Google Scholar 

  12. Lazebnik, M., Madsen, E.L., Frank, G.R., Hagness, S.C.: Tissuemimicking phantom materials for narrowband and ultrawideband microwave applications. Phys. Med. Biol. 50(18), 4245–4258 (2005)

    Google Scholar 

  13. Porter, E., Fakhoury, J., Oprisor, R., Coates, M., Popovic, M.: Improved tissue phantoms for experimental validation of microwave breast cancer detection. In: Proceedings of the Fourth European Conference on antennas and Propagation (EuCAP 2010), pp. 1-5. Barcelona, Spain (2010)

    Google Scholar 

  14. Martellosio, A., et al.: Dielectric properties characterization from 0.5 to 50 GHz of breast cancer tissues. IEEE Trans. Microw. Theory Tech. 65(3), 998–1011 (2017). https://doi.org/10.1109/TMTT.2016.2631162

    Article  Google Scholar 

  15. Di Meo, S., et al.: Realization of tissue mimicking materials for breast phantoms using waste oil hardeners. In: 13th European Conference on Antennas and Propagation (EuCAP 2019), 31 March-5 April (2019)

    Google Scholar 

  16. IT IS dielectric properties (2022). https://www.itis.ethz.ch/virtual-population/tissue-properties/databaseM

  17. Speag DAK SPEAG, Schmid & Partner Engineering AG

    Google Scholar 

  18. Dassault Simulia CST Suite. https://www.3ds.com/

  19. Orfanidis, S.J.: Electromagnetic Waves and Antennas (2002) 2016. http://www.ece.rutgers.edu/~orfanidi/ewa/

  20. Tuovinen, T., Yekeh Yazdandoost, K., Iinatti, J.: Comparison of the performance of two different UWB antennas for the use in WBAN on-body coimmunications. In: European Conference on Antennas and Propagation (EUCAP2012), pp. 2271-3374 (2012)

    Google Scholar 

  21. Särestöniemi, M., Wisanmongkol, J., Taparugsanagorn, A., Hämäläinen, M., Iinatti, J.: Radio channel model for WBAN capsule endoscopy with anatomical voxel models. IEEE Access (2023)

    Google Scholar 

  22. Särestöniemi, M., Reponen, J., Sonkki, M., Myllymäki, S., Pomalaza-Ráez, C., Tervonen O., Myllylä T.: Breast cancer detection feasibility with UWB flexible antennas on wearable monitoring vest. In: TELMED2022, pp. 751–756. Italy (2022)

    Google Scholar 

Download references

Acknowledgement

This research is funded by Academy of Finland Profi6 funding, 6G-Enabling Sustainable Society (University of Oulu, Finland), which is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariella Särestöniemi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Särestöniemi, M., Dessai, R., Myllymäki, S., Myllylä, T. (2023). A Novel Durable Fat Tissue Phantom for Microwave Based Medical Monitoring Applications. In: Chen, Y., Yao, D., Nakano, T. (eds) Bio-inspired Information and Communications Technologies. BICT 2023. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 512. Springer, Cham. https://doi.org/10.1007/978-3-031-43135-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43135-7_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43134-0

  • Online ISBN: 978-3-031-43135-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics