Skip to main content

Silvopastoral Systems and Their Role in Climate Change Mitigation and Nationally Determined Contributions in Latin America

  • Chapter
  • First Online:
Silvopastoral systems of Meso America and Northern South America

Abstract

Cattle ranching is a productive activity that generates high amounts of greenhouse gases (GHG) such as methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2), but can also provide effective alternatives to mitigate and adapt to climate change. Within the livestock sector, silvopastoral systems (SPS) have the capacity to reduce GHG emissions, increase carbon stocks, adapt to climate change, improve animal welfare and increase production of milk, beef and timber under different conditions. This chapter seeks to identify relevant elements related to the capacity of SPSs and livestock in general to meet the Nationally Determined Contributions (NDCs) of Latin American countries, and how nations are incorporating these systems into their mitigation policies. Different research and experiences demonstrating the mitigation potential of SPSs are presented, as well as those elements that must be considered for a successful upscale of these technologies. It also demonstrates the versatility of SPSs and the need for these systems to be incorporated into the NDCs and contribute to their achievement. Countries such as Argentina, Brazil, Chile, Colombia, Costa Rica, Mexico, Paraguay, Uruguay, highlight the need to have mitigation options in livestock activities in order to achieve the objectives proposed in their NDCs, which aim at reductions above 30% of the inertial scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abreu A, Carulla JE, Kreuzer M, Lascano CE, Díaz TE, Cano A, Hans-Dieter H (2003) Efecto del fruto, del pericarpio y del extracto semipurificado de saponinas de Sapindus saponaria sobre la fermentación ruminal y la metanogénesis in vitro en un sistema RUSITEC. Rev Colomb Cienc Pecu 16(2):147–154

    Google Scholar 

  • Aguirre-Villegas HA, Larson RA (2017) Evaluating greenhouse gas emissions from dairy manure management practices using survey data and lifecycle tools. J Clean Prod 143:169–179. https://doi.org/10.1016/j.jclepro.2016.12.133

    Article  CAS  Google Scholar 

  • Alvarado VI, Medrano JL, Haro JA, Castro J, Dickhoefer U, Gómez CA (2019) Methane emission from dairy cows in cultivated and native pastures in High Andes of Peru. In: 7th International greenhouse gas and animal agriculture conference, Foz do Iguaçu

    Google Scholar 

  • ApexBrasil (2018) Brazil’s contribution to the challenge of sustainable global supply. Available online at: http://www.apexbrasil.com.br/uploads/FS-04-PxP2A_22May18.pdf. Accessed 7 Nov 2022

  • Arango J, Ruden A, Martinez-Baron D, Loboguerrero AM, Berndt A, Chacón M, Torres CF, Oyhantcabal W, Gomez CA, Ricci P, Ku-Vera J, Burkart S, Moorby JM, Chirinda N (2020) Ambition meets reality: achieving GHG emission reduction targets in the livestock sector of Latin America. Front Sustain Food Syst 4:65. https://doi.org/10.3389/fsufs.2020.00065

    Article  Google Scholar 

  • Arias L, Dossman M, Camargo JC, Villegas G, Rivera J, Lopera JJ, Murgueitio E, Chará J (2015) Estimación de carbono aéreo y subterráneo en sistemas silvopastoriles intensivos de Colombia. En: 3° Congreso Nacional de Sistemas Silvopastoriles y VIII Congreso Internacional de Sistemas Agroforestales. Agroforestales INTA. Puerto Iguazú, Argentina, 7–9 May, pp 678–682

    Google Scholar 

  • Araújo A, Gross A, Molleta D, Ferreira Costa C, Melo L, Rathmann R, Martins S, Fontana A, Pires A, Venturier A, Jesus A, Paula A, Scivittaro W, Wills W, Holler W, Neto A, Barbieri A, Lucena A, Pereira V, Maia S (2020) Fourth National Communication of Brazil to the UNFCCC. Brasília, Brazil. Available online at: https://unfccc.int/sites/default/files/resource/4a%20Comunicacao%20Nacional.pdf. Accessed 10 Jul 2023

  • Aynekulu E, Suber M, Zomer R, Mboi D, Arango J, Rosenstock TS (2019) Mitigation benefits from expansion of trees on rangeland: an analytical proof of concept for Colombia. CCAFS working paper no. 295. CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). Wageningen. Available online at: www.ccafs.cgiar.org

  • Aynekulu E, Suber M, van Noordwijk M, Arango J, Roshetko JM, Rosenstock TS (2020) Carbon storage potential of silvopastoral systems of Colombia. Land 9(9):309. https://doi.org/10.3390/land9090309

    Article  Google Scholar 

  • Balcázar Á, Rodríguez C (2013) Tierra para uso agropecuaria. In: Perfetti JJ, Balcázar A, Hernández A, Leibovich J (eds) Políticas Para el Desarrollo de la Agricultura en Colombia. SAC and Fedesarrollo, Bogotá, pp 65–115

    Google Scholar 

  • Banco de la República (2018) Reporte de la Situación Actual Del Microcrédito en Colombia–Junio de 2018. Banco de la República, Bogotá. Available online at: www.banrep.gov.co/sites/default/files/publicaciones/archivos/encuesta_microcredito_junio_2018.pdf. Accessed 14 Jan 2022

    Google Scholar 

  • Beauchemin KA, Ungerfeld EM, Eckard RJ, Wang M (2020) Review: fifty years of research on rumen methanogenesis: lessons learned and future challenges for mitigation. Animal 14:s2–s16. https://doi.org/10.1017/S1751731119003100

    Article  CAS  PubMed  Google Scholar 

  • Burkholder J, Libra B, Weyer P, Heathcote S, Kolpin D, Thorne PS, Wichman M (2007) Impacts of waste from concentrated animal feeding operations on water quality. Environ Health Perspect 115:308–312. https://doi.org/10.1289/ehp.8839

    Article  CAS  PubMed  Google Scholar 

  • Byrnes RC, Núñez J, Arenas L, Rao I, Trujillo C, Alvarez C, Arango L, Rasche F, Chirinda N (2017) Biological nitrification inhibition by Brachiaria grasses mitigates soil nitrous oxide emissions from bovine urine patches. Soil Biol Biochem 107:156–163. https://doi.org/10.1016/j.soilbio.2016.12.029

    Article  CAS  Google Scholar 

  • Calle Z, Murgueitio E, Chará J, Molina CH, Zuluaga AF, Calle A (2013) A strategy for scaling-up intensive silvopastoral systems in Colombia. J Sustain For 32(7):677–693. https://doi.org/10.1080/10549811.2013.817338

    Article  Google Scholar 

  • Chacón Navarro M, Reyes Rivero C, Segura Guzmán J (2015) Estrategia para la ganadería baja en carbono en Costa Rica. Informe final, estrategia y plan de acción. Available online at: http://www.mag.go.cr/bibliotecavirtual/E14-9654.pdf. Accessed 14 Jan 2022

  • Chará J, Rivera JE, Barahona R, Murgueitio E, Deblitz C, Reyes E, Mauricio R, Molina J, Flores M, Zuluaga A (2017) Intensive silvopastoral systems: economics and contribution to climate change mitigation and public policies. In: Montagnini F (ed) Integrating landscapes: agroforestry for biodiversity conservation and food sovereignty. Advances in agroforestry. Springer, Dordrecht, pp 395–416. https://doi.org/10.1007/978-3-319-69371-2_19

    Chapter  Google Scholar 

  • Chará J, Reyes E, Peri P, Otte J, Arce E, Schneider F (2019) Silvopastoral systems and their contribution to improved resource use and sustainable development goals: evidence from Latin America. FAO, CIPAV and Agri Benchmark, Cali, 60 pp. Licence: CC BY-NC-SA 3.0 IGO

    Google Scholar 

  • Charry A, Jäger M, Enciso K, Romero M, Sierra L, Quintero M, Hurtado JJ, Burkart S (2018) Cadenas de valor con enfoque ambiental y cero deforestación en la Amazonía colombiana – Oportunidades y retos para el mejoramiento sostenible de la competitividad regional. CIAT Políticas en Síntesis No. 41. Centro Internacional de Agricultura Tropical (CIAT), Cali, p 10. Available online at: https://hdl.handle.net/10568/97203. Accessed 13 Nov 2022

    Google Scholar 

  • Charry A, Narjes M, Enciso K, Peters M, Burkart S (2019) Sustainable intensification of beef production in Colombia – chances for product differentiation and price premiums. Agric Food Econ 7:22. https://doi.org/10.1186/s40100-019-0143-7

    Article  Google Scholar 

  • Chirinda N, Loaiza S, Arenas L, Ruiz V, Faverín C, Alvarez C, Savian LV, Belfon R, Zuniga K, Morales-Rincon LA, Trujillo C, Arango M, Rao I, Arango J, Peters M, Barahona R, Costa C Jr, Rosenstock TS, Richards M, Martinez-Baron M, Cardenas L (2019) Adequate vegetative cover decreases nitrous oxide emissions from cattle urine deposited in grazed pastures under rainy season conditions. Sci Rep 9:908. https://doi.org/10.1038/s41598-018-37453-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Comisión Europea (2019) Avances en la Acción Climática de América Latina: Contribuciones Nacionalmente Determinadas al 2019. Programa EUROCLIMA+, Dirección General de Desarrollo y Cooperación – EuropeAid, Comisión Europea, Bruselas, 171p

    Google Scholar 

  • Cooper PJM, Cappiello S, Vermeulen SJ, Campbell BM, Zougmoré R, Kinyangi J (2013) Largescale implementation of adaptation and mitigation actions in agriculture. CCAFSWorking paper no. 50. CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Copenhagen. Available online at: https://hdl.handle.net/10568/33279. Accessed 14 Jan 2022

    Google Scholar 

  • Coppock DL, Fernández-Giménez M, Hiernaux P, Huber-Sannwald E, Schloeder C, Valdivia C, Arredondo JT, Jacobs M, Turin C, Turner M (2017) Rangeland systems in developing nations: conceptual advances and societal implications. In: Briske D (ed) Rangeland systems, Springer series on environmental management. Springer, Cham, pp 569–642

    Chapter  Google Scholar 

  • Cuartas C, Naranjo JF, Tarazona A, Correa G, Barahona R (2015) Dry matter and nutrient intake and diet composition in Leucaena leucocephala – based intensive silvopastoral systems. Trop Subtrop Agroecosystems 18:303–311. https://www.revista.ccba.uady.mx/ojs/index.php/TSA/article/view/2125

    Google Scholar 

  • Cubillos AM, Vallejo VE, Arbeli Z, Terán W, Dick RP, Molina CH, Molina E, Roldan F (2016) Effect of the conversion of conventional pasture to intensive silvopastoral systems on edaphic bacterial and ammonia oxidizer communities in Colombia. Eur J Soil Biol 72:42–50. https://doi.org/10.1016/j.ejsobi.2015.12.003

    Article  CAS  Google Scholar 

  • Dini Y, Gere JI, Cajarville C, Ciganda V (2018) Using highly nutritious pastures to mitigate enteric methane emissions from cattle grazing systems in South America. Anim Prod Sci 58:2329–2334. https://doi.org/10.1071/AN16803

    Article  Google Scholar 

  • DNP (Departamento Nacional de Planeación) (2014) Sistema Nacional de Crédito Agropecuario: Propuesta de Reforma. Misión para la transformación del campo, Bogotá

    Google Scholar 

  • Dunfield PF (2007) The soil methane sink. In: Reay DS, Hewitt CN, Smith KA, Grace J (eds) Greenhouse gas sinks. CABI, Oxfordshire

    Google Scholar 

  • Enciso K, Bravo A, Charry A, Rosas G, Jäger M, Hurtado JJ, Romero M, Sierra L, Quintero M, Burkart S (2018) Estrategia sectorial de la cadena de ganadería doble propósito en Caquetá, con enfoque agroambiental y cero deforestación. Publicación CIAT No. 454. Centro Internacional de Agricultura Tropical (CIAT), Cali, p 125. Available online at: https://hdl.handle.net/10568/91981. Accessed 21 Oct 2022

    Google Scholar 

  • FAOSTAT (2017) Agriculture Organization of the United Nations Statistics Division. Rome, Italy. Economic and Social Development Department, Rome

    Google Scholar 

  • FEDEGAN (Federación Colombiana de Ganaderos) (2017) Ganadería Colombiana Sostenible. Principios Agroecológicos SSPi. Curso de ganadería sostenible, Manizales

    Google Scholar 

  • Feliciano D, Ledo A, Hillier J, Nayak DR (2018) Which agroforestry options give the greatest soil and above ground carbon benefits in different world regions? Agric Ecosyst Environ 254:117–129. https://doi.org/10.1016/j.agee.2017.11.032

    Article  Google Scholar 

  • Galindo J, González N, Abdalla A, Mariem LA, Lucas RC, Dos Santos KC, Santos M, Louvandini R, Moreira O, Sarduy L (2016) Effect of a raw saponin extract on ruminal microbial population and in vitro methane production with star grass (Cynodon nlemfuensis) substrate. Cuban J Agric Sci 50(1):77–87

    Google Scholar 

  • Gaviria-Uribe X, Bolívar-Vergara DM, Chirinda N, Arango J, Barahona-Rosales R (2019) Enteric methane emissions of zebu steers fed with tropical forages of contrasting nutritional value. In: TropenTag 2019, September 18–20. International Center for Tropical Agriculture (CIAT), Kassel, p 1. Available online at: https://hdl.handle.net/10568/103643. Accessed 4 Jan 2021

  • Gerber PJ, Steinfeld H, Henderson B, Mottet A, Opio C, Dijkman J, Falcucci A, Tempio G (2013) Hacer frente al cambio climático a través de la ganadería – Evaluación global de las emisiones y las oportunidades de mitigación. FAO, Roma. Available online at: http://www.fao.org/3/i3437s/i3437s.pdf. Accessed 4 Jan 2021

    Google Scholar 

  • González-Quintero R, Kristensen T, Sánchez-Pinzón MS, Bolívar-Vergara DM, Chirinda N, Arango J, Pantevez H, Barahona-Rosales R, Knudsen MT (2020) Carbon footprint, non-renewable energy and land use of dual-purpose cattle systems in Colombia using a life cycle assessment approach. Livest Sci 104330. https://doi.org/10.1016/j.livsci.2020.104330

  • Grupo de Trabajo Multisectorial de naturaleza temporal encargado de generar información técnica para orientar la implementación de las Contribuciones Nacionalmente Determinadas (GTM-NDC) (2018) Informe final. GTM-NDC, Lima. Available online at: http://www.minam.gob.pe/cambioclimatico/wp-content/uploads/sites/127/2019/01/190107_Informe-final-GTM-NDC_v17dic18.pdfPA%C3%91OL.pdf. Accessed 10 Jan 2021

  • Haile SG, Nair VD, Nair PKR (2010) Contribution of trees to soil carbon sequestration in silvopastoral systems of Florida. Glob Chang Biol 16:427–438. https://doi.org/10.1111/j.1365-2486.2009.01981.x

    Article  Google Scholar 

  • Harrison M, McSweeney C, Tomkins NW, Eckard RJ (2015) Improving greenhouse gas emissions intensities of subtropical and tropical beef farming systems using Leucaena leucocephala. Agric Syst 136:138–146. https://doi.org/10.1016/j.agsy.2015.03.003

    Article  Google Scholar 

  • Henry S, Texier S, Hallet S (2008) Disentangling the rhizosphere effect on nitrate reducers and denitrifiers: insight into the role of root exudates. Environ Microbiol 10:3082–3092. https://doi.org/10.1111/j.1462-2920.2008.01599.x

    Article  CAS  PubMed  Google Scholar 

  • Herrero M, Henderson B, Havlík P, Thornton PK, Conant RT, Smith P, Wirsenius S, Hristov AN, Gerber P, Gill M, Butterbach-Bahl K, Valin H, Garnett T, Stehfest E (2016) Greenhouse gas mitigation potentials in the livestock sector. Nat Clim Chang 6:452–461. https://doi.org/10.1038/nclimate2925

    Article  Google Scholar 

  • Hess HD, Monsalve LM, Lascano CE, Carulla JE, Díaz TE, Kreuzer M (2003) Supplementation of a tropical grass diet with forage legumes and Sapindus saponaria fruits: effects on in vitro ruminal nitrogen turnover and methanogenesis. Aust J Agric Res 54:703–713

    Article  Google Scholar 

  • Ibrahim M, Guerra L, Casasola F, Neely N (2010) Importance of silvopastoral systems for mitigation of climate change and harnessing of environmental benefits. In: Abberton M, Conant R, Batello C (eds) Grassland carbon sequestration: management, policy, and economics. Proceedings of the workshop on the role of grassland carbon sequestration in the mitigation of climate change. Integrated crop management, vol 11. FAO, Roma. Available online at: https://www.fao.org/3/i1880e/i1880e09.pdf. Accessed 10 Jan 2023

    Google Scholar 

  • IDEAM, PNUD, MADS, DNP, CANCILLERÍA (2018) Segundo Informe Bienal de Actualización de Colombia a la Convención Marco de las Naciones Unidas para el Cambio Climático (CMNUCC). IDEAM, PNUD, MADS, DNP, CANCILLERÍA, FMAM, Bogotá. Available online at: http://www.ideam.gov.co/documents/24277/77448440/PNUD-IDEAM_2RBA.pdf/ff1af137-2149-4516-9923-6423ee4d4b54. Accessed 10 Jan 2021

    Google Scholar 

  • IDEAM, Fundación Natura, PNUD, MADS, DNP, CANCILLERÍA (2021) Tercer Informe Bienal de Actualización de Colombia a la Convención Marco de las Naciones Unidas para el Cambio Climático (CMNUCC). IDEAM, Fundación Natura, PNUD, MADS, DNP, CANCILLERÍA, FMAM. Bogotá D.C., Colombia. Available online at: https://unfccc.int/sites/default/files/resource/BUR3%20-%20COLOMBIA.pdf. Accessed 12 Nov 2023

  • Kumar BM, George SJ, Jamaludheen V, Suresh TK (1998) Comparison of biomass production, tree allometry and nutrient use efficiency of multipurpose trees grown in wood lot and silvopastoral experiments in Kerala, India. For Ecol Manag 112:145–163. https://doi.org/10.1016/S0378-1127(98)00325-9

    Article  Google Scholar 

  • Ku-Vera JC, Jiménez-Ocampo R, Valencia-Salazar SS, Montoya-Flores MD, Molina-Botero IC, Arango J, Gómez-Bravo CA, Aguilar-Pérez CF, Solorio-Sánchez FJ (2020) Role of secondary plant metabolites on enteric methane mitigation in ruminants. Front Vet Sci 7:584. https://doi.org/10.3389/fvets.2020.00584

    Article  PubMed  PubMed Central  Google Scholar 

  • Lerner AM, Zuluaga AF, Chará J, Etter A, Searchinger T (2017) Sustainable cattle ranching in practice: moving from theory to planning in Colombia’s livestock sector. Environ Manage 60(2):176–184. https://doi.org/10.1007/s00267-017-0902-8

    Article  PubMed  Google Scholar 

  • López-Santiago JG, Casanova-Lugo F, Villanueva-López G, Díaz-Echeverría VF, Solorio-Sánchez FJ, Martínez-Zurimendi P, Aryal DR, Chay-Canul AJ (2018) Carbon storage in a silvopastoral system compared to that in a deciduous dry forest in Michoacán, Mexico. Agrofor Syst 93:199–211. https://doi.org/10.1007/s10457-018-0259-x

    Article  Google Scholar 

  • MA (Ministerio de Ambiente de la República de Uruguay), SNRCC (Sistema Nacional de Respuesta al Cambio Climático) (2021) Cuarto informe bienal de actualización a la conferencia de las partes en la Convención Marco de las Naciones Unidas sobre el cambio climático. Montevideo, Uruguay. Available online at: https://www.gub.uy/ministerio-ambiente/sites/ministerio-ambiente/files/2022-01/BUR%204%20%282021%29.pdf. Accessed 10 Jan 2023.

  • MADR Ministerio de Agricultura y Desarrollo Rural (2018) Documento Soporte Construcción Contribución Del Sector Agropecuario y Desarrollo Rural. MADR, Bogotá

    Google Scholar 

  • Maia SMF, Ogle SM, Cerri CEP, Cerric CC (2009) Effect of grassland management on soil carbon sequestration in Rondônia and Mato Grosso states, Brazil. Geoderma 149(1–2):84–91. https://doi.org/10.1016/j.geoderma.2008.11.023

    Article  CAS  Google Scholar 

  • MAyDS (Ministerio de Ambiente y Desarrollo Sostenible de Argentina) (2021) Cuarto informe de actualización de la República de Argentina a la convención marco de las Naciones Unidas sobre el cambio climático. Buenos Aires, Argentina. Available online at: https://www4.unfccc.int/sites/SubmissionsStaging/NationalReports/Documents/3752416_Argentina-BUR4-1-4to%20Informe%20Bienal%20de%20la%20República%20Argentina.pdf. Accessed 20 Mar 2023.

  • MCTIC (2016) Annual estimates of greenhouse gas emissions in Brazil. Available online at: http://www.mctic.gov.br/mctic/export/sites/institucional/arquivos/ASCOM_PUBLICACOES/estimativa_de_gases.pdf. Accessed 7 Jan 2022

  • MINAE (Ministerio del Ambiente y Energía), IMN (Instituto Meteorológico Nacional), DCC (Departamento de Climatología e Investigaciones Aplicadas), Banco Mundial, PNUD (Programa de las Naciones Unidas para el Desarrollo) (2019) II informe bienal de actualización ante la Convención Marco de las Naciones Unidas Sobre el Cambio Climático. San José, Costa Rica. Available online at: https://unfccc.int/sites/default/files/resource/IBA-2019.pdf. Accessed 10 Nov 2023.

  • MINAM (Ministerio del Ambiente del Perú) (2019) Segundo informe bienal de actualización ante la convención marco de las Naciones Unidas sobre el Cambio Climático. Lima, Perú. Available online at: https://unfccc.int/sites/default/files/resource/Segundo%20BUR-PERU.pdf. Accessed 12 Jan 2023.

  • Ministerio de Ambiente y Energía, and Instituto Meteorológico Nacional (MINAE) (2015) Inventario nacional de gases de efecto invernadero y absorción de carbono, 2012

    Google Scholar 

  • Ministerio de Ganadería, Agricultura y Pesca (MGAP) (2019) Anuario Estadístico Agropecuario, 2019

    Google Scholar 

  • Misión para la transformación del campo (2015) El Campo Colombiano: un Camino Hacia el Bienestar y la Paz. In: Informe Detallado de la Misión Para la Transformación del Campo. Departamento Nacional de Planeación, Bogotá

    Google Scholar 

  • Molina IC, Donney’s G, Montoya S, Rivera JE, Villegas G, Chará J, Barahona R (2015) La inclusión de Leucaena leucocephala reduce la producción de metano de terneras Lucerna alimentadas con Cynodon plectostachyus y Megathyrsus maximus. Livest Res Rural Dev 27:1–8. http://www.lrrd.org/lrrd27/5/moli27096.html

    Google Scholar 

  • Molina IC, Angarita E, Mayorga OL, Chará J, Barahona R (2016) Effect of Leucaena leucocephala on methane production of Lucerna heifers fed a diet based on Cynodon plectostachyus. Livest Sci 185:24–29. https://doi.org/10.1016/j.livsci.2016.01.009

    Article  Google Scholar 

  • Molina-Botero IC, Arroyave-Jaramillo J, Valencia-Salazar S, Barahona-Rosales R, Aguilar-Pérez CF, Ayala-Burgos A, Arango J, Ku-Vera JC (2019) Effects of tannins and saponins contained in foliage of Gliricidia sepium and pods of Enterolobium cyclocarpum on fermentation, methane emissions and rumen microbial population in crossbred heifers. Anim Feed Sci Technol 251:1–11. https://doi.org/10.1016/j.anifeedsci.2019.01.011

    Article  CAS  Google Scholar 

  • Montagnini F, Ibrahim M, Murgueitio E (2013) Silvopastoral systems and climate change mitigation in Latin America. Bois For Trop 316(2):3–16

    Article  Google Scholar 

  • Montenegro J, Barrantes E, DiLorenzo N (2016) Methane emissions by beef cattle consuming hay of varying quality in the dry forest ecosystem of Costa Rica. Livest Sci 193:45–50. https://doi.org/10.1016/j.livsci.2016.09.008

    Article  Google Scholar 

  • Montoya-Flores MD, Molina-Botero IC, Arango J, Romano-Muñoz JL, Solorio-Sánchez FJ, Aguilar-Pérez CF, Ku-Vera JC (2020) Effect of dried leaves of Leucaena leucocephala on rumen fermentation, rumen microbial population, and enteric methane production in crossbred heifers. Animals 10(2):300. https://doi.org/10.3390/ani10020300

    Article  PubMed  PubMed Central  Google Scholar 

  • MRE, MCTIC, MMA, MAPA, MME, Embrapa, ABC, ME (2019) Brazil’s third biennial update report to the United Nations Framework Convention on Climate Change. Available online at: https://unfccc.int/documents/193513. Accessed 10 Jan 2023

  • Murgueitio E, Barahona R, Chará J, Flores M, Mauricio RM, Molina JJ (2015) The intensive silvopastoral systems in Latin America: sustainable alternative to face climatic change in animal husbandry. Cuban J Agric Sci 49(4):541–554

    Google Scholar 

  • Nahed-Toral J, Valdivieso-Pérez A, Aguilar-Jiménez R, Cámara-Cordova J, Grande-Cano D (2013) Silvopastoral systems with traditional management in southeastern Mexico: a prototype of livestock agroforestry for cleaner production. J Clean Prod 57:266–279. https://doi.org/10.1016/j.jclepro.2013.06.020

    Article  Google Scholar 

  • Nair PKR, Nair VD, Kumar BM, Showalter J (2010) Carbon sequestration in agroforestry systems. Adv Agron 108:237–307. https://doi.org/10.1016/S0065-2113(10)08005-3

    Article  CAS  Google Scholar 

  • Nuñez J, Arevalo A, Karwat H, Egenolf K, Miles J, Chirinda N, Cadisch G, Rasche F, Rao I, Subbarao G, Arango J (2018) Biological nitrification inhibition activity in a soil-grown biparental population of the forage grass, Brachiaria humidicola. Plant Soil 426:401–411. https://doi.org/10.1007/s11104-018-3626-5

    Article  CAS  Google Scholar 

  • Pathak M, Slade R, Shukla PR, Skea J, Pichs-Madruga R, Ürge-Vorsatz D (2022) Technical summary. In: Shukla PR, Skea J, Slade R, Al Khourdajie A, van Diemen R, McCollum D, Pathak M, Some S, Vyas P, Fradera R, Belkacemi M, Hasija A, Lisboa G, Luz S, Malley J (eds) Climate Change 2022: mitigation of climate change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York. https://doi.org/10.1017/9781009157926.002

    Chapter  Google Scholar 

  • Pereira CH, Patino HO, Hoshide AK, Abreu DC, Rotz CA, Nabinger C (2018) Grazing supplementation and crop diversification benefits for southern Brazil beef: a case study. Agric Syst 162:1–9. https://doi.org/10.1016/j.agsy.2018.01.009

    Article  Google Scholar 

  • Perfetti JJ, Balcázar A, Hernández A, Leibovich J (2013) Políticas Para El Desarrollo De La Agricultura En Colombia. SAC and Fedesarrollo, Bogotá

    Google Scholar 

  • Piñeiro-Vázquez AT, Canul-Solís JR, Jiménez-Ferrer GO, Alayón- Gamboa JA, Chay-Canul AJ, Ayala-Burgos AJ et al (2018) Effect of condensed tannins of Leucaena leucocephala on rumen fermentation, methane production and population of rumen protozoa in heifers fed low quality forage. Asian Australas J Anim Sci 31:1738–1746. https://doi.org/10.5713/ajas.17.0192

    Article  CAS  PubMed  Google Scholar 

  • Piquer-Rodríguez M, Baumann M, Butsic V, Gasparri HI, Gavier-Pizarro G, Volante JN, Müller D, Kuemmerle T (2018) The potential impact of economic policies on future land-use conversions in Argentina. Land Use Policy 79:57–67. https://doi.org/10.1016/j.landusepol.2018.07.039

    Article  Google Scholar 

  • Radrizzani A, Shelton HM, Dalzell SA, Kirchhof G (2011) Soil organic carbon and total nitrogen under Leucaena leucocephala pastures in Queensland. Crop Pasture Sci 62:337–345. https://doi.org/10.1071/CP10115

    Article  CAS  Google Scholar 

  • Resh SC, Binkley D, Parrotta JA (2002) Greater soil carbon sequestration under nitrogen-fixing trees compared with Eucalyptus species. Ecosystems 5:217–231. https://doi.org/10.1007/s10021-001-0067-3

    Article  CAS  Google Scholar 

  • Ricci P, Aello MS (2018) Potencial de reducción de emisiones de metano en un sistema de producción de carne pastoril de ciclo completo del Sudeste Bonaerense. En: Producción bovinos para carne (2013–2017) – Programa Nacional de Producción Animal. Ediciones INTA, Publicación Técnica n° 109, pp 31–35

    Google Scholar 

  • Ricci P, Testa ML, Alonso-Ramos S, Maglietti CS, Pavan E, Juliarena P et al (2018) Reducción de la intensidad de emisiones de metano en respuesta a la suplementación energética en pastoreo. Rev Argent Prod Anim 38:341

    Google Scholar 

  • Rivera JE, Cuartas CA, Naranjo JF, Tafur O, Hurtado EA, Arenas FA, Chará J, Murgueitio E (2015) Efecto de la oferta y el consumo de Tithonia diversifolia en un sistema silvopastoril intensivo (SSPi), en la calidad y productividad de leche bovina en el piedemonte Amazónico colombiano. Livest Res Rural Dev 27:189. http://www.lrrd.org/lrrd27/10/rive27189.html

    Google Scholar 

  • Rivera J, Chará J, Barahona R (2016) Análisis de ciclo de vida para la producción de leche bovina en un sistema silvopastoril intensivo y un sistema convencional en Colombia. Trop Subtrop Agroecosystems 19:237–251. https://www.redalyc.org/pdf/939/93949148007.pdf

    Google Scholar 

  • Rivera JE, Chará J, Barahona R (2019) CH4, CO2 and N2O emissions from grasslands and bovine excreta in two intensive tropical dairy production systems. Agrofor Syst 93:915–928. https://doi.org/10.1007/s10457-018-0187-9

    Article  Google Scholar 

  • Rivera JE, Villegas G, Chará J, Durango SG, Romero MR, Verchot L (2022) Effect of Tithonia diversifolia (Hemsl.) A. Gray intake on in vivo methane (CH4) emission and milk production in dual-purpose cows in the Colombian Amazonian piedmont. Trans Anim Sci 6(4):1–12, txac139. https://doi.org/10.1093/tas/txac139

    Article  CAS  Google Scholar 

  • Rivera-Herrera JE, Molina-Botero I, Chará-Orozco J, Murgueitio-Restrepo M, Barahona-Rosales R (2017) Sistemas silvopastoriles intensivos con Leucaena leucocephala (Lam.) de Wit: Alternativa productiva en el trópico ante el cambio climático. Pastos y Forrajes 40:171–183. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-03942017000300001

    Google Scholar 

  • Secretaría de Ambiente y Desarrollo Sustentable (SGAyDS) (2019) Informe Nacional de Inventario del Tercer Informe Bienal de Actualización de la República Argentina a la Convención Marco de las Naciones Unidas para el Cambio Climático (CMNUCC)

    Google Scholar 

  • SEMARNAT (Secretaría de Medio Ambiente y Recursos Naturales) (2022) México: tercer informe bienal de actualización ante la Convención Marco de las Naciones Unidas sobre el cambio climático. Ciudad de México, México. Available online at: https://www.gob.mx/cms/uploads/attachment/file/747507/158_2022_Mexico_3er_BUR.pdf. Accessed 12 Jan 2023.

  • Servicio de Información Agroalimentaria y Pesquera (SIAP) (2019) Bovino carne y leche – producción ganadera 2006–2015. Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación, Ciudad de México. Available online at: https://www.gob.mx/cms/uploads/attachment/file/165997/bovino.pdf. Accessed 4 Jan 2023

    Google Scholar 

  • SFC (Superintendencia Financiera de Colombia) (2018) Certificación del Interés Bancario Corriente para la modalidad de Crédito de Consumo y Ordinario. Available online at: https://www.superfinanciera.gov.co/publicacion/10097727. Consulted on 4 Jan 2022

  • Sistema Nacional de Respuesta al Cambio Climático y Variabilidad (SNRCC) (2018) Avances en la implementación de la Política Nacional de Cambio Climático de Uruguay y programación de la NDC. Available online at: https://www.latincarbon.com/sites/default/files/2018/Workshop%204.pdf. Accessed 14 Nov 2022

  • Soussana JF, Tallec T, Blanfort V (2010) Mitigating the greenhouse gas balance of ruminant production systems through carbon sequestration in grasslands. Animal 4(3):334–350. https://doi.org/10.1017/S1751731109990784

    Article  CAS  PubMed  Google Scholar 

  • Suber M, Gutiérrez Beltrán N, Torres CF, Turriago JD, Arango J, Banegas NR, Berndt A, Bidó DIM, Burghi V, Cárdenas DA, Cañanda P, Canu FA, Chacón AR, Chacón Navarro M, Chará J, Diaz L, Huamán Fuertes E, Espinoza Bran JE, Girón Muñoz PR, Guerrero Y, Gutierrez Solis JF, Pezo D, Prieto Palacios G, Roman-Cuesta RM, Rosales Riveiro KA, Rueda Arana C, Lucero Romero RD, Sepúlveda C, Serrano Basto G, Solarte A, Woo Poquioma N (2019) Mitigación con Sistemas Silvopastoriles en Latinoamérica. Aportes para la incorporación en los sistemas de Medición Reporte y Verificación bajo la CMUNCC. CCAFS Working Paper no. 254. Wageningen. Available online at: https://hdl.handle.net/10568/100222. Accessed 4 Jan 2023

  • Tanaka JP, Nardi P, Wissuwa M (2010) Nitrification inhibition activity, a novel trait in root exudates of rice. AoB Plants 2010:1–11. https://doi.org/10.1093/aobpla/plq014

    Article  Google Scholar 

  • Tapasco J, LeCoq JF, Ruden A, Rivas JS, Ortiz J (2019) The livestock sector in Colombia: toward a program to facilitate large-scale adoption of mitigation and adaptation practices. Front Sustain Food Syst 3:61. https://doi.org/10.3389/fsufs.2019.00061

    Article  Google Scholar 

  • UNFCCC (2016) First revision of its nationally determined contribution, Republic of Argentina. Available online at: https://unfccc.int/NDCREG. Accessed 14 Nov 2022

  • UNFCCC (2021) COP 26 The Glasgow Climate Pact. 21p. Available at: https://ukcop26.org/wp-content/uploads/2021/11/COP26-Presidency-Outcomes-The-Climate-Pact.pdf

  • United Nations Environment Programme (2018) Emission Gap Report. Available online at: https://www.unep.org/resources/emissions-gap-report-2018. Accessed 14 Nov 2022

  • Valencia-Salazar SS, Piñeiro-Vázquez AT, Molina-Botero IC, Lazos-Balbuena FJ, Uuh-Narváez JJ, Segura-Campos MR, Ramírez-Avilésa L, Solorio-Sánchez FJ, Ku Vera J (2018) Potential of Samanea saman pod meal for enteric methane mitigation in crossbred heifers fed low-quality tropical grass. Agric For Meteorol 258:108–116. https://doi.org/10.3390/agronomy12010100

    Article  CAS  Google Scholar 

  • Willaarts BA, Salmoral G, Farinaci J, Sanz-Sánchez MJ (2014) Trends in land use and ecosystem services. In: Willaarts BA, Garrido A, Llamas MR (eds) Water for food and wellbeing in Latin America and the Caribbean. Social and environmental implications for a globalized economy. Routledge, Oxon/New York, pp 55–80

    Google Scholar 

Download references

Acknowledgments

This manuscript was written as part of the Project 18_III_106_COL_A_ sustainable production strategies. This project is part of the International Climate Initiative (IKI). The Federal Ministry of Environment, Nature Protection and Nuclear Safety (BMU) of Germany supports this initiative based on a decision of the German Bundestag.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julián Esteban Rivera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rivera, J.E. et al. (2023). Silvopastoral Systems and Their Role in Climate Change Mitigation and Nationally Determined Contributions in Latin America. In: Chará, J., Jose, S. (eds) Silvopastoral systems of Meso America and Northern South America. Springer, Cham. https://doi.org/10.1007/978-3-031-43063-3_2

Download citation

Publish with us

Policies and ethics