Skip to main content

Autonomic Dysfunction in Hypertension

  • Chapter
  • First Online:
Autonomic Disorders in Clinical Practice

Abstract

Autonomic dysfunction plays a key role in the development and progression of hypertension. Sustained impairment in autonomic cardiovascular modulation and the associated adrenergic overdrive to the heart, the kidneys and the peripheral vessels lead to haemodynamic and cardiometabolic alterations, which in turn contribute to elevation of blood pressure (BP) levels. If sustained over time, these alterations promote development of hypertension and hypertension-mediated organ damage (HMOD), ultimately leading to an increased risk of cardiovascular events and mortality. In its first part, this chapter will review the main techniques for evaluating autonomic cardiovascular modulation in hypertension, the role of autonomic dysfunction in favouring the development and progression of hypertension, and the mechanisms by which autonomic dysfunction promotes BP elevation. In its second part, focus will be put on the impact of autonomic dysfunction on HMOD and cardiovascular prognosis. The effects of hypertension treatment, either with pharmacological or device-based strategies aimed at improving autonomic function, on BP values and on cardiovascular prognosis will also be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Esler M. The sympathetic nervous system through the ages: from Thomas Willis to resistant hypertension. Exp Physiol. 2011;96(7):611–22.

    PubMed  Google Scholar 

  2. DiBona GF. Sympathetic nervous system and hypertension. Hypertension. 2013;61(3):556–60.

    Article  CAS  PubMed  Google Scholar 

  3. Esler M, Jennings G, Korner P, Willett I, Dudley F, Hasking G, et al. Assessment of human sympathetic nervous system activity from measurements of norepinephrine turnover. Hypertension. 1988;11(1):3–20.

    Article  CAS  PubMed  Google Scholar 

  4. Friberg P, Meredith I, Jennings G, Lambert G, Fazio V, Esler M. Evidence for increased renal norepinephrine overflow during sodium restriction in humans. Hypertension. 1990;16(2):121–30.

    Article  CAS  PubMed  Google Scholar 

  5. Esler M, Lambert G, Jennings G. Regional norepinephrine turnover in human hypertension. Clin Exp Hypertens A. 1989;11(Suppl 1):75–89.

    PubMed  Google Scholar 

  6. Grassi G, Cattaneo BM, Seravalle G, Lanfranchi A, Mancia G. Baroreflex control of sympathetic nerve activity in essential and secondary hypertension. Hypertension. 1998;31(1):68–72.

    Article  CAS  PubMed  Google Scholar 

  7. Parati G, Esler M. The human sympathetic nervous system: its relevance in hypertension and heart failure. Eur Heart J. 2012;33(9):1058–66.

    Article  CAS  PubMed  Google Scholar 

  8. Hagbarth KE, Vallbo AB. Pulse and respiratory grouping of sympathetic impulses in human muscle-nerves. Acta Physiol Scand. 1968;74(1):96–108.

    Article  CAS  PubMed  Google Scholar 

  9. Macefield VG, Wallin BG, Vallbo AB. The discharge behaviour of single vasoconstrictor motoneurones in human muscle nerves. J Physiol. 1994;481(Pt 3):799–809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lambert E, Straznicky N, Schlaich M, Esler M, Dawood T, Hotchkin E, et al. Differing pattern of sympathoexcitation in normal-weight and obesity-related hypertension. Hypertension. 2007;50(5):862–8.

    Article  CAS  PubMed  Google Scholar 

  11. Hasking GJ, Esler MD, Jennings GL, Burton D, Johns JA, Korner PI. Norepinephrine spillover to plasma in patients with congestive heart failure: evidence of increased overall and cardiorenal sympathetic nervous activity. Circulation. 1986;73(4):615–21.

    Article  CAS  PubMed  Google Scholar 

  12. Parati G, Saul JP, Di Rienzo M, Mancia G. Spectral analysis of blood pressure and heart rate variability in evaluating cardiovascular regulation. A critical appraisal. Hypertension. 1995;25(6):1276–86.

    Article  CAS  PubMed  Google Scholar 

  13. Heart Rate Variability. Standards of measurement, physiological interpretation, and clinical use. Task force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Eur Heart J. 1996;17(3):354–81.

    Google Scholar 

  14. Malliani A, Pagani M, Lombardi F, Cerutti S. Cardiovascular neural regulation explored in the frequency domain. Circulation. 1991;84(2):482–92.

    Article  CAS  PubMed  Google Scholar 

  15. Bauer A, Malik M, Barthel P, Schneider R, Watanabe MA, Camm AJ, et al. Turbulence dynamics: an independent predictor of late mortality after acute myocardial infarction. Int J Cardiol. 2006;107(1):42–7.

    Article  PubMed  Google Scholar 

  16. Voss A, Kurths J, Kleiner HJ, Witt A, Wessel N, Saparin P, et al. The application of methods of non-linear dynamics for the improved and predictive recognition of patients threatened by sudden cardiac death. Cardiovasc Res. 1996;31(3):419–33.

    Article  CAS  PubMed  Google Scholar 

  17. Parati G, Di Rienzo M, Mancia G. How to measure baroreflex sensitivity: from the cardiovascular laboratory to daily life. J Hypertens. 2000;18(1):7–19.

    Article  CAS  PubMed  Google Scholar 

  18. Parati G, Di Rienzo M, Bertinieri G, Pomidossi G, Casadei R, Groppelli A, et al. Evaluation of the baroreceptor-heart rate reflex by 24-hour intra-arterial blood pressure monitoring in humans. Hypertension. 1988;12(2):214–22.

    Article  CAS  PubMed  Google Scholar 

  19. Parati G, Mancia G, Di Rienzo M, Castiglioni P. Point: cardiovascular variability is/is not an index of autonomic control of circulation. J Appl Physiol (1985). 2006;101(2):676–8; discussion 81–2

    Article  PubMed  Google Scholar 

  20. Saul JP, Berger RD, Albrecht P, Stein SP, Chen MH, Cohen RJ. Transfer function analysis of the circulation: unique insights into cardiovascular regulation. Am J Phys. 1991;261(4 Pt 2):H1231–45.

    CAS  Google Scholar 

  21. van de Borne P, Rahnama M, Mezzetti S, Montano N, Porta A, Degaute JP, et al. Contrasting effects of phentolamine and nitroprusside on neural and cardiovascular variability. Am J Physiol Heart Circ Physiol. 2001;281(2):H559–65.

    Article  PubMed  Google Scholar 

  22. Julien C, Chapuis B, Cheng Y, Barres C. Dynamic interactions between arterial pressure and sympathetic nerve activity: role of arterial baroreceptors. Am J Physiol Regul Integr Comp Physiol. 2003;285(4):R834–41.

    Article  CAS  PubMed  Google Scholar 

  23. Castiglioni P, Merati G, Veicsteinas A, Parati G, Di Rienzo M. Influence of sympathetic vascular regulation on heart-rate scaling structure: spinal cord lesion as a model of progressively impaired autonomic control. Biomed Tech (Berl). 2006;51(4):240–3.

    Article  PubMed  Google Scholar 

  24. Castiglioni P, Merati G, Parati G, Faini A. Decomposing the complexity of heart-rate variability by the multifractal-multiscale approach to detrended fluctuation analysis: an application to low-level spinal cord injury. Physiol Meas. 2019;40(8):084003.

    Article  PubMed  Google Scholar 

  25. Castiglioni P, Omboni S, Parati G, Faini A. Day and night changes of cardiovascular complexity: a multi-fractal multi-scale analysis. Entropy (Basel). 2020;22(4)

    Google Scholar 

  26. Castiglioni P, Parati G, Faini A. Multifractal and multiscale detrended fluctuation analysis of cardiovascular signals: how the estimation bias affects ShortTerm coefficients and a way to mitigate this error. Annu Int Conf IEEE Eng Med Biol Soc. 2021;2021:257–60.

    PubMed  Google Scholar 

  27. Narkiewicz K, Winnicki M, Schroeder K, Phillips BG, Kato M, Cwalina E, et al. Relationship between muscle sympathetic nerve activity and diurnal blood pressure profile. Hypertension. 2002;39(1):168–72.

    Article  PubMed  Google Scholar 

  28. Smyth HS, Sleight P, Pickering GW. Reflex regulation of arterial pressure during sleep in man. A quantitative method of assessing baroreflex sensitivity. Circ Res. 1969;24(1):109–21.

    Article  CAS  PubMed  Google Scholar 

  29. Eckberg DL, Cavanaugh MS, Mark AL, Abboud FM. A simplified neck suction device for activation of carotid baroreceptors. J Lab Clin Med. 1975;85(1):167–73.

    CAS  PubMed  Google Scholar 

  30. Mancia G, Ferrari A, Gregorini L, Parati G, Ferrari MC, Pomidossi G, et al. Control of blood pressure by carotid sinus baroreceptors in human beings. Am J Cardiol. 1979;44(5):895–902.

    Article  CAS  PubMed  Google Scholar 

  31. Mancia G, Ferrari A, Gregorini L, Parati G, Pomidossi G, Bertinieri G, et al. Blood pressure and heart rate variabilities in normotensive and hypertensive human beings. Circ Res. 1983;53(1):96–104.

    Article  CAS  PubMed  Google Scholar 

  32. Laude D, Elghozi JL, Girard A, Bellard E, Bouhaddi M, Castiglioni P, et al. Comparison of various techniques used to estimate spontaneous baroreflex sensitivity (the EuroBaVar study). Am J Physiol Regul Integr Comp Physiol. 2004;286(1):R226–31.

    Article  CAS  PubMed  Google Scholar 

  33. Parati G, Saul JP, Castiglioni P. Assessing arterial baroreflex control of heart rate: new perspectives. J Hypertens. 2004;22(7):1259–63.

    Article  CAS  PubMed  Google Scholar 

  34. Pagani M, Somers V, Furlan R, Dell’Orto S, Conway J, Baselli G, et al. Changes in autonomic regulation induced by physical training in mild hypertension. Hypertension. 1988;12(6):600–10.

    Article  CAS  PubMed  Google Scholar 

  35. Robbe HW, Mulder LJ, Ruddel H, Langewitz WA, Veldman JB, Mulder G. Assessment of baroreceptor reflex sensitivity by means of spectral analysis. Hypertension. 1987;10(5):538–43.

    Article  CAS  PubMed  Google Scholar 

  36. Barbieri R, Bianchi AM, Triedman JK, Mainardi LT, Cerutti S, Saul JP. Model dependency of multivariate autoregressive spectral analysis. IEEE Eng Med Biol Mag. 1997;16(5):74–85.

    Article  CAS  PubMed  Google Scholar 

  37. Barbieri R, Parati G, Saul JP. Closed- versus open-loop assessment of heart rate baroreflex. IEEE Eng Med Biol Mag. 2001;20(2):33–42.

    Article  CAS  PubMed  Google Scholar 

  38. Baselli G, Cerutti S, Civardi S, Malliani A, Pagani M. Cardiovascular variability signals: towards the identification of a closed-loop model of the neural control mechanisms. IEEE Trans Biomed Eng. 1988;35(12):1033–46.

    Article  CAS  PubMed  Google Scholar 

  39. Patton DJ, Triedman JK, Perrott MH, Vidian AA, Saul JP. Baroreflex gain: characterization using autoregressive moving average analysis. Am J Phys. 1996;270(4 Pt 2):H1240–9.

    CAS  Google Scholar 

  40. Wyller VB, Barbieri R, Saul JP. Blood pressure variability and closed-loop baroreflex assessment in adolescent chronic fatigue syndrome during supine rest and orthostatic stress. Eur J Appl Physiol. 2011;111(3):497–507.

    Article  PubMed  Google Scholar 

  41. Parati G, Castiglioni P, Faini A, Di Rienzo M, Mancia G, Barbieri R, et al. Closed-loop cardiovascular interactions and the baroreflex cardiac arm: modulations over the 24 h and the effect of hypertension. Front Physiol. 2019;10:477.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Grassi G, Mark A, Esler M. The sympathetic nervous system alterations in human hypertension. Circ Res. 2015;116(6):976–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Julius S, Pascual AV, London R. Role of parasympathetic inhibition in the hyperkinetic type of borderline hypertension. Circulation. 1971;44(3):413–8.

    Article  CAS  PubMed  Google Scholar 

  44. Goldstein DS. Plasma catecholamines and essential hypertension. An analytical review. Hypertension. 1983;5(1):86–99.

    Article  CAS  PubMed  Google Scholar 

  45. Anderson EA, Sinkey CA, Lawton WJ, Mark AL. Elevated sympathetic nerve activity in borderline hypertensive humans. Evidence from direct intraneural recordings. Hypertension. 1989;14(2):177–83.

    Article  CAS  PubMed  Google Scholar 

  46. Grassi G, Dell’Oro R, Quarti-Trevano F, Scopelliti F, Seravalle G, Paleari F, et al. Neuroadrenergic and reflex abnormalities in patients with metabolic syndrome. Diabetologia. 2005;48(7):1359–65.

    Article  CAS  PubMed  Google Scholar 

  47. Huggett RJ, Burns J, Mackintosh AF, Mary DA. Sympathetic neural activation in nondiabetic metabolic syndrome and its further augmentation by hypertension. Hypertension. 2004;44(6):847–52.

    Article  CAS  PubMed  Google Scholar 

  48. Grassi G, Colombo M, Seravalle G, Spaziani D, Mancia G. Dissociation between muscle and skin sympathetic nerve activity in essential hypertension, obesity, and congestive heart failure. Hypertension. 1998;31(1):64–7.

    Article  CAS  PubMed  Google Scholar 

  49. Greenwood JP, Stoker JB, Mary DA. Single-unit sympathetic discharge : quantitative assessment in human hypertensive disease. Circulation. 1999;100(12):1305–10.

    Article  CAS  PubMed  Google Scholar 

  50. Schlaich MP, Kaye DM, Lambert E, Sommerville M, Socratous F, Esler MD. Relation between cardiac sympathetic activity and hypertensive left ventricular hypertrophy. Circulation. 2003;108(5):560–5.

    Article  PubMed  Google Scholar 

  51. Mancia G, Grassi G, Parati G, Pomidossi G, Saino A, Malaspina D, et al. Control of circulation by arterial baroreceptors and cardiopulmonary receptors in hypertension. J Cardiovasc Pharmacol. 1986;8(Suppl 5):S82–8.

    Article  PubMed  Google Scholar 

  52. Mancia G, Leonetti G, Picotti GB, Ferrari A, Galva MD, Gregorini L, et al. Plasma catecholamines and blood pressure responses to the carotid baroreceptor reflex in essential hypertension. Clin Sci (Lond). 1979;57(Suppl 5):165s–7s.

    Article  PubMed  Google Scholar 

  53. Seravalle G, Lonati L, Buzzi S, Cairo M, Quarti Trevano F, Dell’Oro R, et al. Sympathetic nerve traffic and baroreflex function in optimal, normal, and high-normal blood pressure states. J Hypertens. 2015;33(7):1411–7.

    Article  CAS  PubMed  Google Scholar 

  54. Grassi G, Seravalle G, Brambilla G, Pini C, Alimento M, Facchetti R, et al. Marked sympathetic activation and baroreflex dysfunction in true resistant hypertension. Int J Cardiol. 2014;177(3):1020–5.

    Article  PubMed  Google Scholar 

  55. Grassi G, Ram VS. Evidence for a critical role of the sympathetic nervous system in hypertension. J Am Soc Hypertens. 2016;10(5):457–66.

    Article  CAS  PubMed  Google Scholar 

  56. DiBona GF, Kopp UC. Neural control of renal function. Physiol Rev. 1997;77(1):75–197.

    Article  CAS  PubMed  Google Scholar 

  57. DiBona GF, Esler M. Translational medicine: the antihypertensive effect of renal denervation. Am J Physiol Regul Integr Comp Physiol. 2010;298(2):R245–53.

    Article  CAS  PubMed  Google Scholar 

  58. Krum H, Schlaich M, Whitbourn R, Sobotka PA, Sadowski J, Bartus K, et al. Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet. 2009;373(9671):1275–81.

    Article  PubMed  Google Scholar 

  59. Schlaich MP, Sobotka PA, Krum H, Lambert E, Esler MD. Renal sympathetic-nerve ablation for uncontrolled hypertension. N Engl J Med. 2009;361(9):932–4.

    Article  CAS  PubMed  Google Scholar 

  60. Guyenet PG. The sympathetic control of blood pressure. Nat Rev Neurosci. 2006;7(5):335–46.

    Article  CAS  PubMed  Google Scholar 

  61. Jose PA, Eisner GM, Felder RA. Role of dopamine receptors in the kidney in the regulation of blood pressure. Curr Opin Nephrol Hypertens. 2002;11(1):87–92.

    Article  PubMed  Google Scholar 

  62. Dampney RA, Coleman MJ, Fontes MA, Hirooka Y, Horiuchi J, Li YW, et al. Central mechanisms underlying short- and long-term regulation of the cardiovascular system. Clin Exp Pharmacol Physiol. 2002;29(4):261–8.

    Article  CAS  PubMed  Google Scholar 

  63. Osborn JW. Hypothesis: set-points and long-term control of arterial pressure. A theoretical argument for a long-term arterial pressure control system in the brain rather than the kidney. Clin Exp Pharmacol Physiol. 2005;32(5–6):384–93.

    Article  CAS  PubMed  Google Scholar 

  64. Krieger EM. Arterial baroreceptor resetting in hypertension (the J. W. McCubbin memorial lecture). Clin Exp Pharmacol Physiol Suppl. 1989;15:3–17.

    Article  CAS  PubMed  Google Scholar 

  65. Thrasher TN. Arterial baroreceptor input contributes to long-term control of blood pressure. Curr Hypertens Rep. 2006;8(3):249–54.

    Article  PubMed  Google Scholar 

  66. Lohmeier TE, Iliescu R. The baroreflex as a long-term controller of arterial pressure. Physiology (Bethesda). 2015;30(2):148–58.

    CAS  PubMed  Google Scholar 

  67. Kopp UC, DiBona GF. Neural regulation of renin secretion. Semin Nephrol. 1993;13(6):543–51.

    CAS  PubMed  Google Scholar 

  68. Johns EJ, Kopp UC, DiBona GF. Neural control of renal function. Compr Physiol. 2011;1(2):731–67.

    Article  PubMed  Google Scholar 

  69. Iliescu R, Irwin ED, Georgakopoulos D, Lohmeier TE. Renal responses to chronic suppression of central sympathetic outflow. Hypertension. 2012;60(3):749–56.

    Article  CAS  PubMed  Google Scholar 

  70. Greenwood JP, Scott EM, Stoker JB, Mary DA. Hypertensive left ventricular hypertrophy: relation to peripheral sympathetic drive. J Am Coll Cardiol. 2001;38(6):1711–7.

    Article  CAS  PubMed  Google Scholar 

  71. Grassi G, Seravalle G, Quarti-Trevano F, Dell’Oro R, Arenare F, Spaziani D, et al. Sympathetic and baroreflex cardiovascular control in hypertension-related left ventricular dysfunction. Hypertension. 2009;53(2):205–9.

    Article  CAS  PubMed  Google Scholar 

  72. Converse RL Jr, Jacobsen TN, Toto RD, Jost CM, Cosentino F, Fouad-Tarazi F, et al. Sympathetic overactivity in patients with chronic renal failure. N Engl J Med. 1992;327(27):1912–8.

    Article  PubMed  Google Scholar 

  73. Grassi G, Quarti-Trevano F, Seravalle G, Arenare F, Volpe M, Furiani S, et al. Early sympathetic activation in the initial clinical stages of chronic renal failure. Hypertension. 2011;57(4):846–51.

    Article  CAS  PubMed  Google Scholar 

  74. Mancia G, Grassi G. The autonomic nervous system and hypertension. Circ Res. 2014;114(11):1804–14.

    Article  CAS  PubMed  Google Scholar 

  75. Florea VG, Cohn JN. The autonomic nervous system and heart failure. Circ Res. 2014;114(11):1815–26.

    Article  CAS  PubMed  Google Scholar 

  76. Cohn JN, Levine TB, Olivari MT, Garberg V, Lura D, Francis GS, et al. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med. 1984;311(13):819–23.

    Article  CAS  PubMed  Google Scholar 

  77. Brunner-La Rocca HP, Esler MD, Jennings GL, Kaye DM. Effect of cardiac sympathetic nervous activity on mode of death in congestive heart failure. Eur Heart J. 2001;22(13):1136–43.

    Article  CAS  PubMed  Google Scholar 

  78. Sander D, Winbeck K, Klingelhofer J, Etgen T, Conrad B. Prognostic relevance of pathological sympathetic activation after acute thromboembolic stroke. Neurology. 2001;57(5):833–8.

    Article  CAS  PubMed  Google Scholar 

  79. Shen MJ, Zipes DP. Role of the autonomic nervous system in modulating cardiac arrhythmias. Circ Res. 2014;114(6):1004–21.

    Article  CAS  PubMed  Google Scholar 

  80. Zoccali C, Mallamaci F, Parlongo S, Cutrupi S, Benedetto FA, Tripepi G, et al. Plasma norepinephrine predicts survival and incident cardiovascular events in patients with end-stage renal disease. Circulation. 2002;105(11):1354–9.

    Article  CAS  PubMed  Google Scholar 

  81. La Rovere MT, Bigger JT Jr, Marcus FI, Mortara A, Schwartz PJ. Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. ATRAMI (autonomic tone and reflexes after myocardial infarction) investigators. Lancet. 1998;351(9101):478–84.

    Article  PubMed  Google Scholar 

  82. Esler M, Straznicky N, Eikelis N, Masuo K, Lambert G, Lambert E. Mechanisms of sympathetic activation in obesity-related hypertension. Hypertension. 2006;48(5):787–96.

    Article  CAS  PubMed  Google Scholar 

  83. Parati G, Lombardi C, Narkiewicz K. Sleep apnea: epidemiology, pathophysiology, and relation to cardiovascular risk. Am J Physiol Regul Integr Comp Physiol. 2007;293(4):R1671–83.

    Article  CAS  PubMed  Google Scholar 

  84. Pepperell JC, Ramdassingh-Dow S, Crosthwaite N, Mullins R, Jenkinson C, Stradling JR, et al. Ambulatory blood pressure after therapeutic and subtherapeutic nasal continuous positive airway pressure for obstructive sleep apnoea: a randomised parallel trial. Lancet. 2002;359(9302):204–10.

    Article  PubMed  Google Scholar 

  85. Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, et al. 2018 practice guidelines for the management of arterial hypertension of the European Society of Hypertension and the European Society of Cardiology: ESH/ESC Task Force for the Management of Arterial Hypertension. J Hypertens. 2018;36(12):2284–309.

    Article  CAS  PubMed  Google Scholar 

  86. Thomopoulos C, Parati G, Zanchetti A. Effects of blood pressure-lowering treatment on cardiovascular outcomes and mortality: 14 - effects of different classes of antihypertensive drugs in older and younger patients: overview and meta-analysis. J Hypertens. 2018;36(8):1637–47.

    Article  CAS  PubMed  Google Scholar 

  87. Thomopoulos C, Bazoukis G, Tsioufis C, Mancia G. Beta-blockers in hypertension: overview and meta-analysis of randomized outcome trials. J Hypertens. 2020;38(9):1669–81.

    Article  CAS  PubMed  Google Scholar 

  88. Mancia G, Kreutz R, Brunström M, Burnier M, Grassi G, et al. Authors/Task Force Members:. 2023 ESH Guidelines for the management of arterial hypertension The Task Force for the management of arterial hypertension of the European Society of Hypertension Endorsed by the International Society of Hypertension (ISH) and the European Renal Association (ERA). J Hypertens. 2023 Jun 21. https://doi.org/10.1097/HJH.0000000000003480. Epub ahead of print. PMID: 37345492.]

  89. Lauder L, Azizi M, Kirtane AJ, Bohm M, Mahfoud F. Device-based therapies for arterial hypertension. Nat Rev Cardiol. 2020;17(10):614–28.

    Article  PubMed  Google Scholar 

  90. Mohaupt MG, Schmidli J, Luft FC. Management of uncontrollable hypertension with a carotid sinus stimulation device. Hypertension. 2007;50(5):825–8.

    Article  CAS  PubMed  Google Scholar 

  91. Chunbin W, Fu S, Jing H. Efficacy and safety of baroreflex activation therapy for treatment of resistant hypertension: a systematic review and meta-analysis. Clin Exp Hypertens. 2018;40(6):501–8.

    Article  PubMed  Google Scholar 

  92. Heusser K, Tank J, Engeli S, Diedrich A, Menne J, Eckert S, et al. Carotid baroreceptor stimulation, sympathetic activity, baroreflex function, and blood pressure in hypertensive patients. Hypertension. 2010;55(3):619–26.

    Article  CAS  PubMed  Google Scholar 

  93. Wallbach M, Lehnig LY, Schroer C, Luders S, Bohning E, Muller GA, et al. Effects of baroreflex activation therapy on ambulatory blood pressure in patients with resistant hypertension. Hypertension. 2016;67(4):701–9.

    Article  CAS  PubMed  Google Scholar 

  94. Bhatt DL, Kandzari DE, O’Neill WW, D’Agostino R, Flack JM, Katzen BT, et al. A controlled trial of renal denervation for resistant hypertension. N Engl J Med. 2014;370(15):1393–401.

    Article  CAS  PubMed  Google Scholar 

  95. Ogoyama Y, Tada K, Abe M, Nanto S, Shibata H, Mukoyama M, et al. Effects of renal denervation on blood pressures in patients with hypertension: a systematic review and meta-analysis of randomized sham-controlled trials. Hypertens Res. 2022;45(2):210–20.

    Article  PubMed  Google Scholar 

  96. Ahmad Y, Francis DP, Bhatt DL, Howard JP. Renal denervation for hypertension: a systematic review and meta-analysis of randomized, blinded, placebo-controlled trials. JACC Cardiovasc Interv. 2021;14(23):2614–24.

    Article  PubMed  Google Scholar 

  97. Mancia et al. ESH 2023 Hypertension Guidelines, J. Hypertension 2023.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianfranco Parati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Parati, G., Ochoa, J.E. (2023). Autonomic Dysfunction in Hypertension. In: Micieli, G., Hilz, M., Cortelli, P. (eds) Autonomic Disorders in Clinical Practice. Springer, Cham. https://doi.org/10.1007/978-3-031-43036-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43036-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43035-0

  • Online ISBN: 978-3-031-43036-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics