Skip to main content

Macrolides for Rhinosinusitis and Nasal Polyps

  • Chapter
  • First Online:
Macrolides as Immunomodulatory Agents

Part of the book series: Progress in Inflammation Research ((PIR,volume 92))

  • 107 Accesses

Abstract

Low-dose and long-term administration of a 14- or 15-membered ring macrolide (macrolide therapy) is well known to be effective in the treatment of chronic airway inflammatory diseases, including diffuse panbronchiolitis, chronic rhinosinusitis (CRS), and cystic fibrosis. The mechanism of action of macrolide therapy is probably immunomodulatory rather than antibacterial. In CRS, macrolide therapy appears to be particularly effective when there is neutrophil-dominant (T17) inflammation, and where there is mucus hypersecretion with nasal discharge and posterior rhinorrhea. However, macrolide therapy is not very effective for CRS with eosinophil-dominant (T2) inflammation, characterized by serum and tissue eosinophilia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AZM:

azithromycin

CRS:

chronic rhinosinusitis

CRSwNP:

chronic rhinosinusitis with nasal polyps

CRSsNP:

chronic rhinosinusitis without nasal polyps

CAM:

clarithromycin

DPB:

diffuse panbronchiolitis

ESS:

endoscopic sinus surger

ECRS:

eosinophilic chronic rhinosinusitis

EM:

erythromycin

EPOS:

European Position Paper on Rhinosinusitis and Nasal Polyps

ILC:

innate lymphoid cell

IFN:

interferon

IL:

interleukin

RXM:

roxithromycin

T1:

Type 1

T2:

Type 2

T17:

Type 17

TNF-α:

tumor necrosis factor-α

References

  1. Fokkens WJ, Lund VJ, Hopkins C, Hellings PW, Kern R, Reitsma S, et al. European position paper on rhinosinusitis and nasal polyps 2020. Rhinology. 2020;58:1–464. https://doi.org/10.4193/Rhin20.600.

    Article  PubMed  Google Scholar 

  2. Hastan D, Fokkens WJ, Bachert C, Newson RB, Bislimovska J, Bockelbrink A, et al. Chronic rhinosinusitis in Europe–an underestimated disease. A GA2LEN study. Allergy. 2011;66:1216–23. https://doi.org/10.1111/j.1398-9995.2011.02646.x.

    Article  CAS  PubMed  Google Scholar 

  3. Hirsch AG, Stewart WF, Sundaresan AS, Young AJ, Kennedy TL, Scott Greene J, et al. Nasal and sinus symptoms and chronic rhinosinusitis in a population-based sample. Allergy. 2017;72:274–81. https://doi.org/10.1111/all.13042.

    Article  CAS  PubMed  Google Scholar 

  4. Pilan RR, Pinna FR, Bezerra TF, Mori RL, Padua FG, Bento RF, et al. Prevalence of chronic rhinosinusitis in Sao Paulo. Rhinology. 2015;70:533–9. https://doi.org/10.1111/all.12577.

    Article  Google Scholar 

  5. Akdis CA, Bachert C, Cingi C, Dykewicz MS, Hellings PW, Naclerio RM, et al. Endotypes and phenotypes of chronic rhinosinusitis: a PRACTALL document of the European academy of allergy and clinical immunology and the american academy of allergy, asthma & immunology. J Allergy Clin Immunol. 2013;131:1479–90. https://doi.org/10.1016/j.jaci.2013.02.036.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kato A, Peters AT, Stevens WW, Schleimer RP, Tan BK, Kern RC. Endotypes of chronic rhinosinusitis: relationships to disease phenotypes, pathogenesis, clinical findings, and treatment approaches. Allergy. 2022;77:812–26. https://doi.org/10.1111/all.15074.

    Article  PubMed  Google Scholar 

  7. Staudacher AG, Peters AT, Kato A, Stevens WW. Use of endotypes, phenotypes, and inflammatory markers to guide treatment decisions in chronic rhinosinusitis. Ann Allergy Asthma Immunol. 2020;124:318–25. https://doi.org/10.1016/j.anai.2020.01.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang X, Zhang N, Bo M, Holtappels G, Zheng M, Lou H, et al. Diversity of T(H) cytokine profiles in patients with chronic rhinosinusitis: a multicenter study in Europe, Asia, and Oceania. J Allergy Clin Immunol. 2016;138:1344–53. https://doi.org/10.1016/j.jaci.2016.05.041.

    Article  CAS  PubMed  Google Scholar 

  9. Tomassen P, Vandeplas G, Van Zele T, Cardell LO, Arebro J, Olze H, et al. Inflammatory endotypes of chronic rhinosinusitis based on cluster analysis of biomarkers. J Allergy Clin Immunol. 2016;137:1449–56.e4. https://doi.org/10.1016/j.jaci.2015.12.1324.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang Y, Gevaert E, Lou H, Wang X, Zhang L, Bachert C, et al. Chronic rhinosinusitis in Asia. J Allergy Clin Immunol. 2017;140:1230–9. https://doi.org/10.1016/j.jaci.2017.09.009.

    Article  PubMed  Google Scholar 

  11. Wang ET, Zheng Y, Liu PF, Guo LJ. Eosinophilic chronic rhinosinusitis in east Asians. World J Clin Cases. 2014;2:873–82. https://doi.org/10.12998/wjcc.v2.i12.873.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Cao PP, Li HB, Wang BF, Wang SB, You XJ, Cui YH, et al. Distinct immunopathologic characteristics of various types of chronic rhinosinusitis in adult Chinese. J Allergy Clin Immunol. 2009;124:478–84.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang N, Van Zele T, Perez-Novo C, Van Bruaene N, Holtappels G, DeRuyck N, et al. Different types of T-effector cells orchestrate mucosal inflammation in chronic sinus disease. J Allergy Clin Immunol. 2008;122:961–8. https://doi.org/10.1016/j.jaci.2008.07.008.

    Article  CAS  PubMed  Google Scholar 

  14. Tokunaga T, Sakashita M, Haruna T, Asaka D, Takeno S, Ikeda H, et al. Novel scoring system and algorithm for classifying chronic rhinosinusitis: the JESREC study. Allergy. 2015;70:995–1003. https://doi.org/10.1111/all.12644.

    Article  CAS  PubMed  Google Scholar 

  15. Stevens WW, Peters AT, Tan BK, Klingler AI, Poposki JA, Hulse KE, et al. Associations between inflammatory endotypes and clinical presentations in chronic rhinosinusitis. J Allergy Clin Immunol Pract. 2019;7:2812–20.e3. https://doi.org/10.1016/j.jaip.2019.05.009.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Asano K, Suzuki M, Shimane T, Suzaki H. Suppression of co-stimulatory molecule expressions on splenic B lymphocytes by a macrolide antibiotic, roxithromycin in vitro. Int Immunopharmacol. 2001;1:1385–92. https://doi.org/10.1016/s1567-5769(01)00070-4.

    Article  CAS  PubMed  Google Scholar 

  17. Suzaki H, Asano K, Yu M, Hisamitsu T. Influence of roxithromycin on inflammatory cytokine production from nasal polyp fibroblasts in vitro. Acta Otolaryngol. 2003;123:637–42. https://doi.org/10.1080/0001648021000028132.

    Article  CAS  PubMed  Google Scholar 

  18. Furuya A, Asano K, Shoji N, Hirano K, Hamasaki T, Suzaki H. Suppression of nitric oxide production from nasal fibroblasts by metabolized clarithromycin in vitro. J Inflamm. 2010;7:56. https://doi.org/10.1186/1476-9255-7-56.

    Article  CAS  Google Scholar 

  19. Suzaki I, Asano K, Kanei A, Suzaki H. Enhancement of thioredoxin production from nasal epithelial cells by the macrolide antibiotic, clarithromycin in vitro. In Vivo. 2013;27:351–6.

    CAS  PubMed  Google Scholar 

  20. Kanoh S, Rubin BK. Mechanisms of action and clinical application of macrolides as immunomodulatory medications. Clin Microbiol Rev. 2010;23:590–615. https://doi.org/10.1128/cmr.00078-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Keicho N, Kudoh S. Diffuse panbronchiolitis: role of macrolides in therapy. Am J Respir Med. 2002;1:119–31. https://doi.org/10.1007/bf03256601.

    Article  CAS  PubMed  Google Scholar 

  22. Rubin BK, Henke MO. Immunomodulatory activity and effectiveness of macrolides in chronic airway disease. Chest. 2004;125:70s–8s. https://doi.org/10.1378/chest.125.2_suppl.70s.

    Article  CAS  PubMed  Google Scholar 

  23. Culić O, Eraković V, Parnham MJ. Anti-inflammatory effects of macrolide antibiotics. Eur J Pharmacol. 2001;429:209–29. https://doi.org/10.1016/s0014-2999(01)01321-8.

    Article  PubMed  Google Scholar 

  24. Kwiatkowska B, Maślińska M. Macrolide therapy in chronic inflammatory diseases. Med Inf. 2012;2012:636157. https://doi.org/10.1155/2012/636157.

    Article  CAS  Google Scholar 

  25. Suzaki H. Clinical study and action mechanisms of macrolide therapy for chronic rhinosinusitis. Asian Rhinol J. 2013;1:14–20.

    Google Scholar 

  26. Shimizu T, Suzaki H. Past, present and future of macrolide therapy for chronic rhinosinusitis in Japan. Auris Nasus Larynx. 2016;43:131–6. https://doi.org/10.1016/j.anl.2015.08.014.

    Article  PubMed  Google Scholar 

  27. Kudoh S, Azuma A, Yamamoto M, Izumi T, Ando M. Improvement of survival in patients with diffuse panbronchiolitis treated with low-dose erythromycin. Am J Respir Crit Care Med. 1998;157:1829–32. https://doi.org/10.1164/ajrccm.157.6.9710075.

    Article  CAS  PubMed  Google Scholar 

  28. Shimizu T, Shimizu S, Hattori R, Gabazza EC, Majima Y. In vivo and in vitro effects of macrolide antibiotics on mucus secretion in airway epithelial cells. Am J Respir Crit Care Med. 2003;168:581–7. https://doi.org/10.1164/rccm.200212-1437OC.

    Article  PubMed  Google Scholar 

  29. Tamaoki J, Isono K, Sakai N, Kanemura T, Konno K. Erythromycin inhibits cl secretion across canine tracheal epithelial cells. Eur Respir J. 1992;5:234–8.

    Article  CAS  PubMed  Google Scholar 

  30. Tamaoki J, Chiyotani A, Sakai N, Takeyama K, Takizawa T. Effect of erythromycin on ciliary motility in rabbit airway epithelium in vitro. J Antimicrob Chemother. 1992;29:173–8. https://doi.org/10.1093/jac/29.2.173.

    Article  CAS  PubMed  Google Scholar 

  31. Takizawa H, Desaki M, Ohtoshi T, Kawasaki S, Kohyama T, Sato M, et al. Erythromycin modulates IL-8 expression in normal and inflamed human bronchial epithelial cells. Am J Respir Crit Care Med. 1997;156:266–71.

    Article  CAS  PubMed  Google Scholar 

  32. Desaki M, Takizawa H, Ohtoshi T, Kasama T, Kobayashi K, Sunazuka T, et al. Erythromycin suppresses nuclear factor-kappaB and activator protein-1 activation in human bronchial epithelial cells. Biochem Biophys Res Commun. 2000;267:124–8. https://doi.org/10.1006/bbrc.1999.1917.

    Article  CAS  PubMed  Google Scholar 

  33. Kanai K, Asano K, Hisamitsu T, Suzaki H. Suppression of matrix metalloproteinase production from nasal fibroblasts by macrolide antibiotics in vitro. Eur Respir J. 2004;23:671–8. https://doi.org/10.1183/09031936.04.00057104.

    Article  CAS  PubMed  Google Scholar 

  34. Ichikawa Y, Ninomiya H, Koga H, Tanaka M, Kinoshita M, Tokunaga N, et al. Erythromycin reduces neutrophils and neutrophil-derived elastolytic-like activity in the lower respiratory tract of bronchiolitis patients. Am Rev Respir Dis. 1992;146:196–203. https://doi.org/10.1164/ajrccm/146.1.196.

    Article  CAS  PubMed  Google Scholar 

  35. Kikuchi T, Hagiwara K, Honda Y, Gomi K, Kobayashi T, Takahashi H, et al. Clarithromycin suppresses lipopolysaccharide-induced interleukin-8 production by human monocytes through AP-1 and NF-kappa B transcription factors. J Antimicrob Chemother. 2002;49:745–55. https://doi.org/10.1093/jac/dkf008.

    Article  CAS  PubMed  Google Scholar 

  36. Tateda K, Comte R, Pechere JC, Köhler T, Yamaguchi K, Van Delden C. Azithromycin inhibits quorum sensing in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2001;45:1930–3. https://doi.org/10.1128/aac.45.6.1930-1933.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yanagihara K, Tomono K, Imamura Y, Kaneko Y, Kuroki M, Sawai T, et al. Effect of clarithromycin on chronic respiratory infection caused by Pseudomonas aeruginosa with biofilm formation in an experimental murine model. J Antimicrob Chemother. 2002;49:867–70. https://doi.org/10.1093/jac/dkf013.

    Article  CAS  PubMed  Google Scholar 

  38. Suzaki H, Kudoh S, Oritsu S, Kurashima A, Nagai H. The effects of low-dose long-term erythromycin administration treatment on chronic rhinosinusitis complicated by diffuse panbronchiolitis. Ther Res. 1990;11:29–31. [in Japanese]

    Google Scholar 

  39. Kikuchi S, Suzaki H, Aoki A, Ito O, Nomura Y. Clinical effect of long-term low-dose erythromycin therapy for chronic sinusitis. Pract Otorhinolaryngol. 1991;84:41–7. [in Japanese]. https://doi.org/10.5631/jibirin.84.41.

    Article  Google Scholar 

  40. Kikuchi S, Yamasoba T, Suzaki H, Aoki A, Hara M, Nomura Y. Long-term low-dose erythromycin therapy for chronic sinusitis practica oto-rhino-laryngologica 1992;85:1245–1252. [in Japanese] doi:https://doi.org/10.5631/jibirin.85.1245.

  41. Ohyama M, Ueno K, Matsune S, Hanamure Y, Tsurumaru H. Current status on macrolide therapy in chronic sinusitis. Pract Otorhinolaryngol. 1999;92:571–82. [in Japanese]. https://doi.org/10.5631/jibirin.92.571.

    Article  Google Scholar 

  42. Majima Y. Clinical implications of the immunomodulatory effects of macrolides on sinusitis. Am J Med. 2004;117:20–5. https://doi.org/10.1016/j.amjmed.2004.07.025.

    Article  CAS  Google Scholar 

  43. Japan Rhinologic Society. Macrolide therapy. In: The handbook of management of chronic rhinosinusitis. Tokyo: Kanehara Press; 2007. p. 49–51. [in Japanese].

    Google Scholar 

  44. Southern KW, Barker PM. Azithromycin for cystic fibrosis. Eur Respir J. 2004;24(5):834–8. https://doi.org/10.1183/09031936.04.00084304.

    Article  CAS  PubMed  Google Scholar 

  45. Kobbernagel HE, Buchvald FF, Haarman EG, Casaulta C, Collins SA, Hogg C, et al. Efficacy and safety of azithromycin maintenance therapy in primary ciliary dyskinesia (BESTCILIA): a multicentre, double-blind, randomised, placebo-controlled phase 3 trial. Lancet Respir Med. 2020;8:493–505. https://doi.org/10.1016/s2213-2600(20)30058-8.

    Article  CAS  PubMed  Google Scholar 

  46. Cervin A, Kalm O, Sandkull P, Lindberg S. One-year low-dose erythromycin treatment of persistent chronic sinusitis after sinus surgery: clinical outcome and effects on mucociliary parameters and nasal nitric oxide. Otolaryngol Head Neck Surg. 2002;126:481–9. https://doi.org/10.1067/mhn.2002.124849.

    Article  PubMed  Google Scholar 

  47. Wallwork B, Coman W, Mackay-Sim A, Greiff L, Cervin A. A double-blind, randomized, placebo-controlled trial of macrolide in the treatment of chronic rhinosinusitis. Laryngoscope. 2006;116:189–93. https://doi.org/10.1097/01.mlg.0000191560.53555.08.

    Article  CAS  PubMed  Google Scholar 

  48. Fokkens W, Lund V, Mullol J. EP3OS 2007: European position paper on rhinosinusitis and nasal polyps 2007. A summary for otorhinolaryngologists. Rhinology. 2007;45:97–101.

    PubMed  Google Scholar 

  49. Scadding GK, Durham SR, Mirakian R, Jones NS, Drake-Lee AB, Ryan D, et al. BSACI guidelines for the management of rhinosinusitis and nasal polyposis. Clin Exp Allergy. 2008;38:260–75. https://doi.org/10.1111/j.1365-2222.2007.02889.x.

    Article  CAS  PubMed  Google Scholar 

  50. Fokkens WJ, Lund VJ, Mullol J, Bachert C, Alobid I, Baroody F, et al. EPOS 2012: European position paper on rhinosinusitis and nasal polyps 2012. A summary for otorhinolaryngologists. Rhinology. 2012;50(1):1–12. https://doi.org/10.4193/Rhino12.000.

    Article  PubMed  Google Scholar 

  51. Videler WJ, Badia L, Harvey RJ, Gane S, Georgalas C, van der Meulen FW, et al. Lack of efficacy of long-term, low-dose azithromycin in chronic rhinosinusitis: a randomized controlled trial. Allergy. 2011;66:1457–68. https://doi.org/10.1111/j.1398-9995.2011.02693.x.

    Article  CAS  PubMed  Google Scholar 

  52. Seresirikachorn K, Suwanparin N, Srisunthornphanich C, Chitsuthipakorn W, Kanjanawasee D, Snidvongs K. Factors of success of low-dose macrolides in chronic sinusitis: systematic review and meta-analysis. Laryngoscope. 2019;129:1510–9. https://doi.org/10.1002/lary.27865.

    Article  CAS  PubMed  Google Scholar 

  53. Orlandi RR, Kingdom TT, Smith TL, Bleier B, DeConde A, Luong AU, et al. International consensus statement on allergy and rhinology: rhinosinusitis 2021. I Int Forum Allergy Rhinol. 2021;11:213–739. https://doi.org/10.1002/alr.22741.

    Article  PubMed  Google Scholar 

  54. Hashiba M. Clinical efficacy of long-term macrolides therapy for chronic sinusitis-comparison between erythromycin and clarithromycin. Pract Otorhinolaryngol. 1997;90:717–27. [in Japanese]. https://doi.org/10.5631/jibirin.90.717.

    Article  Google Scholar 

  55. Sato K, Suga M, Akaike T, Fujii S, Muranaka H, Doi T, et al. Therapeutic effect of erythromycin on influenza virus-induced lung injury in mice. Am J Respir Crit Care Med. 1998;157:853–7. https://doi.org/10.1164/ajrccm.157.3.9703098.

    Article  CAS  PubMed  Google Scholar 

  56. Yamaya M, Shinya K, Hatachi Y, Kubo H, Asada M, Yasuda H, et al. Clarithromycin inhibits type a seasonal influenza virus infection in human airway epithelial cells. J Pharmacol Exp Ther. 2010;333:81–90. https://doi.org/10.1124/jpet.109.162149.

    Article  CAS  PubMed  Google Scholar 

  57. Asada M, Yoshida M, Suzuki T, Hatachi Y, Sasaki T, Yasuda H, et al. Macrolide antibiotics inhibit respiratory syncytial virus infection in human airway epithelial cells. Antivir Res. 2009;83:191–200. https://doi.org/10.1016/j.antiviral.2009.05.003.

    Article  CAS  PubMed  Google Scholar 

  58. Suzuki T, Yamaya M, Sekizawa K, Hosoda M, Yamada N, Ishizuka S, et al. Erythromycin inhibits rhinovirus infection in cultured human tracheal epithelial cells. Am J Respir Crit Care Med. 2002;165:1113–8. https://doi.org/10.1164/ajrccm.165.8.2103094.

    Article  PubMed  Google Scholar 

  59. Khan AA, Slifer TR, Araujo FG, Remington JS. Effect of clarithromycin and azithromycin on production of cytokines by human monocytes. Int J Antimicrob Agents. 1999;11:121–32. https://doi.org/10.1016/s0924-8579(98)00091-0.

    Article  CAS  PubMed  Google Scholar 

  60. Suzuki H, Shimomura A, Ikeda K, Furukawa M, Oshima T, Takasaka T. Inhibitory effect of macrolides on interleukin-8 secretion from cultured human nasal epithelial cells. Laryngoscope. 1997;107:1661–6. https://doi.org/10.1097/00005537-199712000-00016.

    Article  CAS  PubMed  Google Scholar 

  61. Tamaoki J, Kadota J, Takizawa H. Clinical implications of the immunomodulatory effects of macrolides. Am J Med. 2004;117:5s–11s. https://doi.org/10.1016/j.amjmed.2004.07.023.

    Article  CAS  PubMed  Google Scholar 

  62. Yamada T, Fujieda S, Mori S, Yamamoto H, Saito H. Macrolide treatment decreased the size of nasal polyps and IL-8 levels in nasal lavage. Am J Rhinol. 2000;14:143–8. https://doi.org/10.2500/105065800782102717.

    Article  CAS  PubMed  Google Scholar 

  63. Kadota J, Sakito O, Kohno S, Sawa H, Mukae H, Oda H, et al. A mechanism of erythromycin treatment in patients with diffuse panbronchiolitis. Am Rev Respir Dis. 1993;147:153–9. https://doi.org/10.1164/ajrccm/147.1.153.

    Article  CAS  PubMed  Google Scholar 

  64. Tamaoki J, Takeyama K, Yamawaki I, Kondo M, Konno K. Lipopolysaccharide-induced goblet cell hypersecretion in the Guinea pig trachea: inhibition by macrolides. Am J Phys. 1997;272:15–9. https://doi.org/10.1152/ajplung.1997.272.1.L15.

    Article  Google Scholar 

  65. Ikeda K, Wu D, Takasaka T. Inhibition of acetylcholine-evoked cl- currents by 14-membered macrolide antibiotics in isolated acinar cells of the Guinea pig nasal gland. Am J Respir Cell Mol Biol. 1995;13:449–54. https://doi.org/10.1165/ajrcmb.13.4.7546775.

    Article  CAS  PubMed  Google Scholar 

  66. Goswami SK, Kivity S, Marom Z. Erythromycin inhibits respiratory glycoconjugate secretion from human airways in vitro. Am Rev Respir Dis. 1990;141:72–8. https://doi.org/10.1164/ajrccm/141.1.72.

    Article  CAS  PubMed  Google Scholar 

  67. Mori S, Saito H, Kimura Y, Takahashi N, Yamada T. Effect of macrolides on nasal ciliary activity. Jibi Inkoka Tembo. 1995;38:220–7. [in Japanese]. https://doi.org/10.11453/orltokyo1958.38.Supplement3_220.

    Article  Google Scholar 

  68. Yen TT, Jiang RS, Chang CY, Wu CY, Liang KL. Erythromycin reduces nasal inflammation by inhibiting immunoglobulin production, attenuating mucus secretion, and modulating cytokine expression. Sci Rep. 2021;11:21737. https://doi.org/10.1038/s41598-021-01192-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Moriyama H, Yanagi K, Ohtori N, Fukami M. Evaluation of endoscopic sinus surgery for chronic sinusitis: post-operative erythromycin therapy. Rhinology. 1995;33:166–70.

    CAS  PubMed  Google Scholar 

  70. Nakamura Y, Suzuki M, Yokota M, Ozaki S, Ohno N, Hamajima Y, et al. Optimal duration of macrolide treatment for chronic sinusitis after endoscopic sinus surgery. Auris Nasus Larynx. 2013;40:366–72. https://doi.org/10.1016/j.anl.2012.09.009.

    Article  PubMed  Google Scholar 

  71. Varvyanskaya A, Lopatin A. Efficacy of long-term low-dose macrolide therapy in preventing early recurrence of nasal polyps after endoscopic sinus surgery. Int Forum Allergy Rhinol. 2014;4:533–41. https://doi.org/10.1002/alr.21318.

    Article  PubMed  Google Scholar 

  72. Lin CF, Wang MC, Merton AT, Ho NH, Wu PS, Hsu AT, et al. Add-on effect of clarithromycin to oral steroids as post- operative therapy for chronic rhinosinusitis with nasal polyps: a randomised controlled trial. Rhinology. 2020;58:550–8. https://doi.org/10.4193/Rhin19.325.

    Article  PubMed  Google Scholar 

  73. Perić A, Baletić N, Milojević M, Sotirović J, Živić L, Perić AV, et al. Effects of preoperative clarithromycin Administration in Patients with nasal polyposis. West Indian Med J. 2014;63:721–7. https://doi.org/10.7727/wimj.2013.313.

    Article  PubMed  Google Scholar 

  74. Haruna S, Shimada C, Ozawa M, Fukami S, Moriyama H. A study of poor responders for long-term, low-dose macrolide administration for chronic sinusitis. Rhinology. 2009;47:66–71.

    PubMed  Google Scholar 

  75. Suzuki H, Ikeda K, Honma R, Gotoh S, Oshima T, Furukawa M, et al. Prognostic factors of chronic rhinosinusitis under long-term low-dose macrolide therapy. ORL. 2000;62:121–7. https://doi.org/10.1159/000027731.

    Article  CAS  PubMed  Google Scholar 

  76. Kim SD, Cho KS. Samter's triad: state of the art. Clin Exp Otorhinolaryngol. 2018;11:71–80. https://doi.org/10.21053/ceo.2017.01606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Terao H, Asano K, Kanai K, Kyo Y, Watanabe S, Hisamitsu T, et al. Suppressive activity of macrolide antibiotics on nitric oxide production by lipopolysaccharide stimulation in mice. Mediators of Inflamm. 2003;12:195–202.

    Article  CAS  Google Scholar 

  78. Park HH, Park IH, Cho JS, Lee YM, Lee HM. The effect of macrolides on myofibroblast differentiation and collagen production in nasal polyp-derived fibroblasts. Am J Rhinol Allergy. 2010;24:348–53. https://doi.org/10.2500/ajra.2010.24.3520.

    Article  PubMed  Google Scholar 

  79. Nozoe K, Aida Y, Fukuda T, Sanui T, Nishimura F. Mechanisms of the macrolide-induced inhibition of superoxide generation by neutrophils. Inflammation. 2016;39:1039–48. https://doi.org/10.1007/s10753-016-0333-3.

    Article  CAS  PubMed  Google Scholar 

  80. Yamamoto S, Asano K, Shimane T, Hisamitsu T, Suzaki H. Enhancement of endogenous corticosterone levels by a macrolide antibiotic, roxithromycin in mice. Life Sci. 2001;69:1115–21. https://doi.org/10.1016/S0024-3205(01)01199-7.

    Article  CAS  PubMed  Google Scholar 

  81. Cunningham MJ, Chiu EJ, Landgraf JM, Gliklich RE. The health impact of chronic recurrent rhinosinusitis in children. Arch Otolaryngol Head Neck Surg. 2000;126:1363–8. https://doi.org/10.1001/archotol.126.11.1363.

    Article  CAS  PubMed  Google Scholar 

  82. Adams PF, Hendershot GE, Marano MA. Current estimates from the national health interview survey, 1996. Vital Health Stat. 1999;10:1–203.

    Google Scholar 

  83. Sidell D, Shapiro NL, Bhattacharyya N. Obesity and the risk of chronic rhinosinusitis, allergic rhinitis, and acute otitis media in school-age children. Laryngoscope. 2013;123:2360–3. https://doi.org/10.1002/lary.24038.

    Article  PubMed  Google Scholar 

  84. Gilani S, Shin JJ. The burden and visit prevalence of pediatric chronic rhinosinusitis. Otolaryngol Head Neck Surg. 2017;157:1048–52. https://doi.org/10.1177/0194599817721177.

    Article  PubMed  Google Scholar 

  85. Sami AS, Scadding GK. Rhinosinusitis in secondary school children-part 2: main project analysis of MSNOT-20 Young persons questionnaire (MSYPQ). Rhinology. 2014;52:225–30. https://doi.org/10.4193/Rhin12-011-2.

    Article  CAS  PubMed  Google Scholar 

  86. Seresirikachorn K, Chetthanon T, Suwansirisuk T, Aeumjaturapat S, Chusakul S, Kanjanaumporn J, et al. Low-dose macrolides for treating pediatric rhinosinusitis: a retrospective study and literature review. SAGE Open Med. 2020;8:2050312120933642. https://doi.org/10.1177/2050312120933642.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isao Suzaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Suzaki, I. (2024). Macrolides for Rhinosinusitis and Nasal Polyps. In: Rubin, B.K., Shinkai, M. (eds) Macrolides as Immunomodulatory Agents. Progress in Inflammation Research, vol 92. Springer, Cham. https://doi.org/10.1007/978-3-031-42859-3_11

Download citation

Publish with us

Policies and ethics