Skip to main content

Minimum Spanning Set Selection in Graph Kernels

  • Conference paper
  • First Online:
Graph-Based Representations in Pattern Recognition (GbRPR 2023)

Abstract

Kernel-based learning models such as support vector machines (SVMs) can seamlessly deal with graph structures thanks to suitable kernel functions that compute a particular similarity between pairs of data samples. In the last two decades, a plethora of graph kernels have been proposed, motivated by theoretical properties or designed specifically for an application domain. Computing graph kernels however presents a significant cost for both training and inference, since predictions on unseen graphs require evaluating the kernel e.g. between the new sample and all support vectors, and solutions to an SVM optimization problem are not guaranteed to be sparse. In this paper, we present a method to select a minimum set of spanning vectors for the solutions of SVMs, based on the rank-revealing QR decomposition of the kernel Gram matrix. We apply it on 18 real-world classification tasks on chemical compounds, showing its effectiveness to reduce the computational burden in performing inference on unseen graphs by minimizing the number of support vectors without penalizing accuracy. This in turn gives us a tool to better analyze the trade-off between accuracy, expressiveness and inference cost among different graph kernels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bacciu, D., Errica, F., Micheli, A., Podda, M.: A gentle introduction to deep learning for graphs. Neural Netw. 129, 203–221 (2020). https://doi.org/10.1016/j.neunet.2020.06.006

    Article  MATH  Google Scholar 

  2. Borgwardt, K., Ghisu, E., Llinares-López, F., O’Bray, L., Rieck, B.: Graph kernels: state-of-the-art and future challenges. Found. Trends Mach. Learn. 13(5–6), 531–712 (2020). https://doi.org/10.1561/2200000076

    Article  MATH  Google Scholar 

  3. Borgwardt, K.M., Ong, C.S., Schonauer, S., Vishwanathan, S.V.N., Smola, A.J., Kriegel, H.P.: Protein function prediction via graph kernels. Bioinformatics 21(Suppl. 1), i47–i56 (2005). https://doi.org/10.1093/bioinformatics/bti1007

    Article  Google Scholar 

  4. Borgwardt, K., Kriegel, H.: Shortest-path kernels on graphs. In: Proceedings of the Fifth IEEE International Conference on Data Mining, pp. 74–81 (2005). https://doi.org/10.1109/ICDM.2005.132

  5. Chandrasekaran, S., Ipsen, I.C.F.: On rank-revealing factorisations. SIAM J. Matrix Anal. Appl. 15(2), 592–622 (1994). https://doi.org/10.1137/S0895479891223781

    Article  MathSciNet  MATH  Google Scholar 

  6. Downs, T., Gates, K., Masters, A.: Exact simplification of support vector solutions. J. Mach. Learn. Res. 2(Dec), 293–297 (2001). https://www.jmlr.org/papers/v2/downs01a.html

  7. Gu, M., Eisenstat, S.C.: Efficient algorithms for computing a strong rank-revealing QR factorization. SIAM J. Sci. Comput. 17(4), 848–869 (1996). https://doi.org/10.1137/0917055

    Article  MathSciNet  MATH  Google Scholar 

  8. Hong, Y.P., Pan, C.T.: Rank-revealing QR factorizations and the singular value decomposition. Math. Comput. 58(197), 213–232 (1992). https://doi.org/10.2307/2153029

    Article  MathSciNet  MATH  Google Scholar 

  9. Joachims, T.: Making large-scale support vector machine learning practical. In: Schölkopf, B., Burges, C.J.C., Smola, A.J. (eds.) Advances in Kernel Methods: Support Vector Learning, Chapter 11, pp. 169–184 (1999). https://doi.org/10.7551/mitpress/1130.003.0015

  10. Kriege, N.M., Johansson, F.D., Morris, C.: A survey on graph kernels. Appl. Netw. Sci. 5(1), 1–42 (2019). https://doi.org/10.1007/s41109-019-0195-3

    Article  Google Scholar 

  11. Lee, Y.J., Mangasarian, O.L.: RSVM: reduced support vector machines. In: Proceedings of the 2001 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics, Philadelphia, PA (2001). https://doi.org/10.1137/1.9781611972719.13

  12. Morris, C., Kriege, N.M., Bause, F., Kersting, K., Mutzel, P., Neumann, M.: TUDataset: a collection of benchmark datasets for learning with graphs. In: ICML 2020 Workshop on Graph Representation Learning and Beyond (GRL+ 2020) (2020). https://www.graphlearning.io

  13. Oneto, L., Navarin, N., Donini, M., Sperduti, A., Aiolli, F., Anguita, D.: Measuring the expressivity of graph kernels through statistical learning theory. Neurocomputing 268, 4–16 (2017). https://doi.org/10.1016/j.neucom.2017.02.088

    Article  Google Scholar 

  14. Pan, C.T., Tang, P.T.P.: Bounds on singular values revealed by QR factorizations. BIT Numer. Math. 39(4), 740–756 (1999). https://doi.org/10.1023/A:1022395308695

    Article  MathSciNet  MATH  Google Scholar 

  15. Panja, R., Pal, N.R.: MS-SVM: minimally spanned support vector machine. Appl. Soft Comput. J. 64, 356–365 (2018). https://doi.org/10.1016/j.asoc.2017.12.017

    Article  Google Scholar 

  16. Ralaivola, L., Swamidass, S.J., Saigo, H., Baldi, P.: Graph kernels for chemical informatics. Neural Netw. 18(8), 1093–1110 (2005). https://doi.org/10.1016/j.neunet.2005.07.009

    Article  Google Scholar 

  17. Schölkopf, B., Smola, A.J., Williamson, R.C., Bartlett, P.L.: New support vector algorithms. Neural Comput. 12(5), 1207–1245 (2000). https://doi.org/10.1162/089976600300015565

    Article  Google Scholar 

  18. Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. The MIT Press, Cambridge (2001). https://doi.org/10.7551/mitpress/4175.001.0001

  19. Shervashidze, N., Schweitzer, P., van Leeuwen, E.J., Mehlhorn, K., Borgwardt, K.M.: Weisfeiler-Lehman graph kernels. J. Mach. Learn. Res. 12, 2539–2561 (2011). https://doi.org/10.5555/1953048.2078187

  20. Shervashidze, N., Vishwanathan, S.V., Petri, T.H., Mehlhorn, K., Borgwardt, K.M.: Efficient graphlet kernels for large graph comparison. In: Proceedings of the Twelth International Conference on Artificial Intelligence and Statistics, vol. 5, pp. 488–495 (2009). https://proceedings.mlr.press/v5/shervashidze09a.html

  21. Siglidis, G., Nikolentzos, G., Limnios, S., Giatsidis, C., Skianis, K., Vazirgiannis, M.: GraKeL: a graph kernel library in Python. J. Mach. Learn. Res. 21(54), 1–5 (2020). http://jmlr.org/papers/v21/18-370.html

  22. Tran, Q.A., Zhang, Q.L., Li, X.: Reduce the number of support vectors by using clustering techniques. In: Proceedings of the Second International Conference on Machine Learning and Cybernetics, vol. 2, pp. 1245–1248 (2003). https://doi.org/10.1109/icmlc.2003.1259678

  23. Yi, H.C., You, Z.H., Huang, D.S., Kwoh, C.K.: Graph representation learning in bioinformatics: trends, methods and applications. Brief. Bioinform. 23(1), 1–16 (2022). https://doi.org/10.1093/bib/bbab340

    Article  Google Scholar 

Download references

Acknowledgement

Research partly funded by PNRR - M4C2 - Investimento 1.3, Partenariato Esteso PE00000013 - “FAIR - Future Artificial Intelligence Research” - Spoke 1 “Human-centered AI”, funded by the European Commission under the NextGeneration EU programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Tortorella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tortorella, D., Micheli, A. (2023). Minimum Spanning Set Selection in Graph Kernels. In: Vento, M., Foggia, P., Conte, D., Carletti, V. (eds) Graph-Based Representations in Pattern Recognition. GbRPR 2023. Lecture Notes in Computer Science, vol 14121. Springer, Cham. https://doi.org/10.1007/978-3-031-42795-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-42795-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-42794-7

  • Online ISBN: 978-3-031-42795-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics