Skip to main content

Abstract

An original method of scanning photodielectric spectroscopy (SPDS), which belongs to photoelectric methods for studying localized states of charge carriers in wide-gap semiconductors, is presented. A distinctive feature of this method is the possibility of measuring not only the energy spectrum of carrier states but also the near-surface electrostatic potential of the crystal. The method is based on high sensitivity measurements of the spectral dependences of the real and imaginary parts effective values of the crystal permittivity in the low-frequency region. The obtained dependencies are presented in the form of diagrams in the complex plane. Modifications of the method are considered. The main results of the SPDS study of cadmium zinc telluride crystals are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Makarenko L. F. et al. Formation of a Bistable Interstitial Complex in Irradiated p-Type Silicon //physica status solidi (a). – 2019. – V. 216. – №. 17. – С. 1900354. https://doi.org/10.1002/pssa.201900354

  2. Besleaga C. et al. Bistability of the BiOi complex and its implications on evaluating the “acceptor removal” process in p-type silicon //Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. – 2021. – V. 1017. – С. 165809. https://doi.org/10.1016/j.nima.2021.165809

  3. José Coutinho Theory of the Thermal Stability of Silicon Vacancies and Interstitials in 4H–SiC Crystals 2021, 11(2), 167; https://doi.org/10.3390/cryst11020167

  4. A. Costaldini, A. Cavallini, B. Fraboni, P. Fernandez, J. Appl. Phys. 83, 2121 (1998). https://doi.org/10.1063/1.366946

    Article  Google Scholar 

  5. P. Fougeres, P. Siffert, M. Hageali, J. M. Koebel, and R. Regal, Nucl.Instrum. Methods Phys. Res. A 428, 38 (1999). https://doi.org/10.1016/S0168-9002(98)01578-2

    Article  CAS  Google Scholar 

  6. F. Bechstedt, Semiconductor Surfaces and Interfaces. Their Atomic and Electron Structures, Physical Research Vol. 5, edited by R. Enderlein (Academic, Berlin, 1988), p. 488.

    Google Scholar 

  7. F. A. D’Altroy and N. Y. Fan, Phys. Rev. 103, 1671 (1956). https://doi.org/10.1103/PhysRev.103.1671

  8. D. M. Hofmann, W. Stadler, P. Christmann, and B. K. Meyer, Nucl. Instrum. Methods Phys. Res. A 380, 117 (1996). https://doi.org/10.1016/S0168-9002(96)00287-2

    Article  CAS  Google Scholar 

  9. V. K. Komar, V. P. Migal, O. N. Chugai, et al., Appl. Phys. Lett. 81, 4195 (2002). https://doi.org/10.1063/1.1525883

    Article  CAS  Google Scholar 

  10. H. Hermon, M. Schieber, R. B. James, et al., Nucl. Instrum. Methods Phys. Res. A 428, 30 (1999). https://doi.org/10.1016/S0168-9002(98)01577-0

    Article  CAS  Google Scholar 

  11. N. A. Penin, Fiz. Tekh. Poluprovodn. (St. Petersburg) 30, 626 (1996) [Semiconductors 30, 340 (1996)].

    Google Scholar 

  12. S.M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981; Mir, Moscow, 1984), Vol. 1. https://doi.org/10.1002/0470068329

  13. L. N. Davydov, O. A. Datsenko, G. P. Kovtun, et al., Funct. Mater. 8, 255 (2001).

    Google Scholar 

  14. E. H. Rhoderick, Metal–Semiconductor Contacts (Clarendon, Oxford, 1978; Radio i Svyaz’, Moscow, 1982). https://doi.org/10.1049/ip-i-1.1982.0001

  15. J. S. Blakemore, Semiconductor Statistics (Pergamon, Oxford, 1962; Mir, Moscow, 1964).

    Google Scholar 

  16. N. T. Bagraev and V. A. Mashkov, Solid State Commun. 65, 1111 (1988). https://doi.org/10.1016/0038-1098(88)90904-0

    Article  Google Scholar 

  17. N. T. Bagraev, R. M. Mirsaatov, I. S. Polovtsev, and A. Yusupov, Fiz. Tekh. Poluprovodn. (St. Petersburg) 26, 481 (1992) [Sov. Phys. Semicond. 26, 271 (1992)]

    Google Scholar 

  18. N. T. Bagraev, R. M. Mirsaatov, I. S. Polovtsev, et al., Fiz. Tekh. Poluprovodn. (St. Petersburg) 26, 427 (1992) [Sov. Phys. Semicond. 26, 242 (1992)].

    Google Scholar 

  19. N. T. Bagraev, Zh. Éksp. Teor. Fiz. 100, 1378 (1991) [Sov. Phys. JETP 73, 764 (1991)].

    Google Scholar 

  20. P. N. Tkachuk, V. I. Tkachuk, P. N. Bukivskioe, and M. V. Kurik, Fiz. Tverd. Tela (St. Petersburg) 46, 804 (2004) [Phys. Solid State 46, 825 (2004)]. https://doi.org/10.1134/1.1744955

  21. Tineke Thio, J. W. Bennett, D. J. Chadi, et al., J. Cryst. Growth 159, 345 (1996). https://doi.org/10.1016/0022-0248(95)00681-8

  22. V. V. Kislyuk, N. E. Korsunskaya, I. V. Markevich, et al., Fiz. Tekh. Poluprovodn. (St. Petersburg) 30, 1884 (1996) [Semiconductors 30, 986 (1996)].

    Google Scholar 

  23. P. De Antonis, E. J. Morton, and E. J. W. Podd, IEEE Trans. Nucl. Sci. 43, 1487 (1996). https://doi.org/10.1109/23.507089

    Article  CAS  Google Scholar 

  24. A. Zumbiehl, M. Hage-Ali, P. Fougeres, et al., J. Cryst. Growth 197, 650 (1999). https://doi.org/10.1016/S0022-0248(98)00764-7

    Article  CAS  Google Scholar 

  25. V. Karpus, Pis’ma Zh. Eksp. Teor. Fiz. 44, 334 (1986) [JETP Lett. 44, 430 (1986)].

    Google Scholar 

  26. O. V. Kurnosova and I. N. Yassievich, Fiz. Tverd. Tela (Leningrad) 26, 3307 (1984) [Sov. Phys. Solid State 26, 1988 (1984)].

    Google Scholar 

  27. P. Fougeres, Crystal growth and characterization of Cd1-xZnxTe crystals elaborated by the High Pressure Bridgman Method: application to X and γ ray detection, Thesis, Louis Pasteur University, Strasbourg, 1998.

    Google Scholar 

  28. V.K. Komar’, V.M. Puzikov, O.N. Chugai, D.P. Nalivaiko, S.V. Sulima, Effect of thebias electric field on the spectral distribution of the photodielectric effect in theSchottky-barrier structures based on the cadmium-zinc telluride crystals, Semiconductors 41 (2007) 689–695, https://doi.org/10.1134/S1063782607060140

  29. O.V. Konstantinov, V.V. Tsarenkov, Changes in the surface potential of a semiconductor under illumination, Semiconductors 24 (1990) 2126–2131.

    CAS  Google Scholar 

  30. Yu. N. Demkov, G.F. Drukarev, Decay and polarizability of a negative ion in an electric field, JETP 20 (1964) 918–924.

    Google Scholar 

  31. A.J. Syllaios, P.K. Liao, B.E. Dean, Optical absorption coefficient of CdZnTe, Proc. SPIE 2274, Optics, Photonics (1994) 49–54, https://doi.org/10.1117/12.189248

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chugai, O., Poluboiarov, O., Oliinyk, S., Sulima, S. (2024). Scanning Photodielectric Spectroscopy of CdZnTe Crystals. In: Krishnamoorthy, S., Iniewski, K.(. (eds) Advances in Fabrication and Investigation of Nanomaterials for Industrial Applications . Springer, Cham. https://doi.org/10.1007/978-3-031-42700-8_6

Download citation

Publish with us

Policies and ethics