Skip to main content

Nanoparticles-Induced Alignment of Nematic Liquid Crystals for Tunable Electro-Optical Devices

  • Chapter
  • First Online:
Advances in Fabrication and Investigation of Nanomaterials for Industrial Applications

Abstract

Nematic Liquid Crystals (NLCs), long-range orientationally ordered fluids, have always been the best choice for the development of various display and non-display devices due to their simplest phase structure, good thermal stability, and easier alignment. The extreme sensitivity of NLCs to the external stimuli such as electric, magnetic, light, and surface forces, etc. has been the key feature for their broad range of applications. For tunable electro-optical device fabrication, the response of NLC molecules to the external stimuli must be coherent. Such coherent stimuli response of NLC molecules could be achieved by using various alignment techniques. For instance, rubbing of polyimides, coating of surfactants, magnetic field, oblique evaporation of SiOx, photoalignment, etc. are being utilized for the uniform and stable alignment of NLCs. Besides these alignment techniques, the use of nanoparticles to align NLCs has also recently been considered as one of the novel techniques to align NLCs without using any alignment layer. In this chapter, we have greatly reviewed the recent progress made in the field of nanoparticle-controlled alignment of NLCs useful for the tunable electro-optical devices and discussed the future perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stephen M. J.; Straley, J. P. Physics of liquid crystals. Rev. Mod. Phys. 1974, 46, 617. https://doi.org/10.1103/RevModPhys.46.617

    Article  CAS  Google Scholar 

  2. de Gennes, P. G., Prost, J. The Physics of Liquid Crystals. (Oxford University Press, New York, 1993).

    Book  Google Scholar 

  3. Demus, D.; Goodby, J.; Gray,G. W.; Spiess,H. -W.; Vill,V. Handbook of Liquid Crystals. Vol. 2A., Mol. Liq. Cryst. (1998).

    Google Scholar 

  4. S. Kumar, S. Liquid Crystals: Experimental Study of Physical Properties and Phase Transitions. (Cambridge University Press, Cambridge, New York, 2001).

    Google Scholar 

  5. Collings, P. J.; Hird, M. Introduction to liquid crystals: Chemistry and physics. Mol. Cryst. Liq. Cryst. 2017, 339, 273–214.

    Google Scholar 

  6. Blinc, R. Ferroelectric Liquid Crystals, Science, CRC Press, 1984.

    Google Scholar 

  7. Goodby, J. W., Ferroelectric Liquid Crystals: Principles, Properties and Applications. Gordon and Breach Science Publishers, Science, 1991.

    Google Scholar 

  8. Priscilla, P; Malik, P; Supreet; Kumar, A; Castagna, R; and Singh, G. Recent advances and future perspectives on nanoparticles-controlled alignment of liquid crystals for displays and other photonic devices, Critical Reviews in Solid State and Materials Sciences (2023), 48, 57-92. https://doi.org/10.1080/10408436.2022.2027226

    Article  Google Scholar 

  9. Chen, R. H. Liquid Crystal Displays: Fundamental Physics and Technology. Wiley, Germany, 2011.

    Book  Google Scholar 

  10. DiLisi, G. A. Phases of liquid crystals: An Introduction to Liquid Crystals. IOP Publishing, 2019.

    Book  Google Scholar 

  11. Prakash, J; Kumar, A; and Chauhan, S. Aligning liquid crystal materials through nanoparticles: A review of recent progress. Liquids (2022), 2, 50–71. https://doi.org/10.3390/liquids2020005

    Article  CAS  Google Scholar 

  12. Hegman, T. and Qi, H. Nanoparticles in liquid crystals: Synthesis, self-assembly, defect formation, and potential applications. J. Inorganic and Organometallic Polymers and Materials (2007), 17, 483–508.

    Article  Google Scholar 

  13. Lagerwall, J. P. F. and Scalia, G. Liquid crystals with nano and microparticles. World Scientific publications, vol 1 &2, 2016.

    Google Scholar 

  14. Shen, Y. and Dierking, I. Perspectives in liquid-crystal-aided nanotechnology and Nanoscience. Applied Sciences (2019) 9, 2512. https://doi.org/10.3390/app9122512

    Article  CAS  Google Scholar 

  15. Mirzaei, J.; Reznikov, M.; Hegman, T., Impact of nanoscale particles and carbon nanotubes on current and future generations of liquid crystal displays. J. Mater. Chem. (2008), 18, 3288–3294. https://doi.org/10.1039/B718920F (b) Stamatoiu, O.; Mirzaei, Nanoparticles in liquid crystals and liquid crystalline nanoparticles. Top. Curr. Chem. (2012), 318, 331–394. https://doi.org/10.1007/128_2011_233

  16. Jeng, S. C.; Kuo, C. W.; Wang, H. L.; Liao, C. C. Nanoparticles-induced vertical alignment in liquid crystal cell. Appl. Phys. Lett. (2007), 91, 061112. https://doi.org/10.1063/1.2768309

    Article  Google Scholar 

  17. Kuo, C. W.; Jeng, S. C.; Wang, H. L.; Liao, C. C. Application of nanoparticle-induced vertical alignment in hybrid-aligned nematic liquid crystal cell. Appl. Phys. Lett. (2007), 91, 141103. https://doi.org/10.1063/1.2794007

    Article  Google Scholar 

  18. Hwang, S. J.; Jeng, S. C.; Yang, C. Y.; Kuo, C. W.; Liao, C. C. Characteristics of nanoparticle-doped homeotropic liquid crystal devices. J. Phys. D: Appl. Phys. (2009), 42, 025102. https://doi.org/10.1088/0022-3727/42/2/025102

  19. Teng, W. Y.; Jeng, S. C.; Kuo, C. W.; Lin, Y. R.; Liao, C. C.; Chin, W. K. Nanoparticles-doped guest-host liquid crystal displays. Opt. Lett. (2008), 33, 1663. https://doi.org/10.1364/OL.33.001663

    Article  CAS  PubMed  Google Scholar 

  20. Jeng, S. C.; Hwang, S. J.; Yang, C. Y. Tunable pretilt angles based on nanoparticles-doped planar liquid-crystal cells. Opt. Lett. (2009), 34, 455. https://doi.org/10.1364/OL.34.000455

    Article  CAS  PubMed  Google Scholar 

  21. Jeng, S. C.; Hwang, S. J.; Chen, T. A.; Liu, H. S.; Chen, M. Z. Controlling the alignment of liquid crystals by nanoparticle-doped and UV-treated polyimide alignment films. Proc. of SPIE (2012), 8279, 827912. https://doi.org/10.1117/12.912827

    Article  Google Scholar 

  22. Hwang, S. J.; Shieh, Y. M.; Lin, K. R. Liquid crystal microlens using nanoparticle-induced vertical alignment. J. Nanomaterials (2015), 2015, 6. https://doi.org/10.1155/2015/840182

    Article  Google Scholar 

  23. Chen, S. H.; Chou, T. R.; Chiang, Y. T.; and Chao, C. Y. Nanoparticle-induced vertical alignment liquid crystal cell with highly conductive PEDOT:PSS films as transparent electrodes. Mol. Cryst. Liq. Cryst., (2017), 646, 107–115.

    Article  CAS  Google Scholar 

  24. Qi, H.; Hegmann, T. Multiple alignment modes for nematic liquid crystals doped with alkylthiol-capped gold nanoparticles. ACS Appl. Mater. & Interfaces (2009), 8, 1731–1738. https://doi.org/10.1021/am9002815

    Article  Google Scholar 

  25. Kinkead, B.; Hegmann, T. Effects of size, capping agent, and concentration of CdSe and CdTe quantum dots doped into a nematic liquid crystal on the optical and electro-optic properties of the final colloidal liquid crystal mixture. J. Mater. Chem. (2010), 20, 448–458. https://doi.org/10.1039/B911641A

    Article  CAS  Google Scholar 

  26. Dogra, A. R.; Sharma, V.; Gahrotra, R.; Kumar, P. Evaporation induced self-assembly of silica nanoparticles on ITO substrates in a confined cell of vertical alignment of liquid crystals and performance analysis. Colloids and Surfaces A: Physiochemical and engineering aspects (2022), 642, 128712. https://doi.org/10.1016/j.colsurfa.2022.128712

    Article  CAS  Google Scholar 

  27. Chinky, Kumar, P.; Sharma, V.; Malik, P.; Raina, K. K. Nano particles induced vertical alignment of liquid crystal for display devices with augmented morphological and electro-optical characteristics. J. Mol. Struct. (2019), 1196, 866–873. https://doi.org/10.1016/j.molstruc.2019.06.045

  28. Kumar, A.; Prakash, J.; Goel, P.; Khan, T.; Dhawan, S. K.; Silotia, P.; Biradar, A. M. Polymeric-nanoparticles–induced vertical alignment in ferroelectric liquid crystals. Euro. Phys. Lett. (2009), 88, 26003. https://doi.org/10.1209/0295-5075/88/26003

    Article  Google Scholar 

  29. Kumar, A.; Silotia, P.; Biradar, A. M. Effect of polymeric nanoparticles on dielectric and electro-optical properties of ferroelectric liquid crystals. J. Appl. Phys. (2010), 108, 024107. https://doi.org/10.1063/1.3452355

    Article  Google Scholar 

  30. Mirzaei, J.; Urbanski, M.; Yu, K.; Kitzerow, H.-S.; Hegmann, T. Nanocomposites of a nematic liquid crystal doped with magic-sized CdSe quantum dots. J. Mater. Chem. (2011), 21, 12710–12716. https://doi.org/10.1039/C1JM11832C

    Article  CAS  Google Scholar 

  31. Kumar, A.; Silotia, P.; Biradar, A. M. Sign reversal of dielectric anisotropy of ferroelectric liquid crystals doped with cadmium telluride quantum dots. Appl. Phys. Lett. (2011), 99, 072902. https://doi.org/10.1063/1.3627179

    Article  Google Scholar 

  32. Kundu, S.; Akimoto, M.; Hirayama, I.; Inoue, M.; Kobayashi, S.; Takatoh, K. Enhancement of Contrast Ratio by Using Ferroelectric Nanoparticles in the Alignment Layer of Liquid Crystal Display. Jpn. J. Appl. Phys. (2008), 47, 4751–4754. https://doi.org/10.1143/JJAP.47.4751

    Article  CAS  Google Scholar 

  33. Fuh, A.Y.G.; Huang, C. Y.; Liu, C. K.; Chen, Y. D.; Cheng, K. T. Dual liquid crystal alignment configuration based on nanoparticle-doped polymer films. Opt. Exp. (2011), 19, 11825. https://doi.org/10.1364/OE.19.011825

    Article  CAS  Google Scholar 

  34. Akimoto, M.; Kundu, S. K.; Hirayama, I. I.; Kobayashi, S.; Takatoh, K. Improvement of Electro-Optical Characteristics of Liquid Crystal Display by Nanoparticle-Embedded Alignment Layers. Mol. Cryst. Liq. Cryst. (2009), 508, 1/363–13/375. https://doi.org/10.1080/15421400903058130

    Article  Google Scholar 

  35. Liu, B.; Ma, Y.; Zhao, D.; Xu, L.; Liu, F.; Zhou, W.; Guo, L. Effects of morphology and concentration of CuS nanoparticles on alignment and electro-optic properties of nematic liquid crystal. Nano Res. (2017), 10, 618–625. https://doi.org/10.1007/s12274-016-1321-5

    Article  CAS  Google Scholar 

  36. Chen, J.; Cranton, W.; Fihn M. Handbook of Visual Display Technology Berlin, Germany: Springer, 2016. https://doi.org/10.1007/978-3-319-14346-0

  37. van Aerle, N. A. J. M.; Tol, A. J. W. Molecular Orientation in Rubbed Polyimide Alignment Layers Used for Liquid-Crystal Displays. Macromolecules (1994), 27, 6520–6526. https://doi.org/10.1021/ma00100a042

    Article  Google Scholar 

  38. Ishihara, S.; Wakemoto, H.; Nakazima, K.; Matsuo, Y. The effect of rubbed polymer films on the liquid crystal alignment. Liq. Cryst. (1989), 4, 669–675. https://doi.org/10.1080/02678298908033202

    Article  CAS  Google Scholar 

  39. Meyerhofer, D. New technique of aligning liquid crystals on surfaces. Appl. Phys. Lett. (1976), 29, 691–692. https://doi.org/10.1063/1.88928

    Article  CAS  Google Scholar 

  40. Cognard, J. Alignment of Nematic Liquid-Crystals and Their Mixtures. Molecular Crystals and Liquid Crystals. Gordon and Breach Science Publishers, New York, 1982.

    Google Scholar 

  41. Jákli, A.; Jánossy, I.; Bata, L.; Buka, A. A special shear method of alignment for smectic liquid crystals. Cryst. Res. Technol. 1988, 23, 949-954. https://doi.org/10.1002/crat.2170230721

    Article  Google Scholar 

  42. Chigrinov, V. G.; Kozenkov, V. M.; Kwok, H. S. Photoalignment of Liquid Crystalline Materials: Physics and Applications Wiley SID Series in Display Technology (Wiley, Chichester, England; Hoboken, NJ, 2008. https://doi.org/10.1002/9780470751800

    Book  Google Scholar 

  43. Chrzanowski, M. M.; Zielinski, J.; Olifierczuk, M.; Kedzierski, J.; Nowinowski-Kruszelnicki, E. J. Photoalignment-an alternative aligning technique for liquid crystal displays. Achiev. Mater. Manuf. Eng. (2011), 48, 7–13.

    Google Scholar 

  44. Yaroshchuk, O.; Reznikov, Y. Photoalignment of liquid crystals: basics and current trends. J. Mater. Chem. (2012), 22, 286. https://doi.org/10.1039/C1JM13485J

    Article  CAS  Google Scholar 

  45. Babakhanova, G.; Lavrentovich, O. D. The Techniques of Surface Alignment of Liquid Crystals. Springer Proceedings in Physics (2019), 223, 165–197. https://doi.org/10.1007/978-3-030-21755-6_7

    Article  CAS  Google Scholar 

  46. Hasegawa, M. Azimuthal anchoring energies of photoaligned nematic liquid crystals produced by small dosages of linearly polarized uv light. Jpn. J. Appl. Phys. (1999), 38, L457–L460. https://doi.org/10.1143/JJAP.41.L1167

    CAS  Google Scholar 

  47. Gibbons, W. M.; Shannon, P. J.; Sun, S. T.; Swetlin, B. J. Patterned optical properties in photopolymerized surface-aligned liquid-crystal films. Nature (1991), 351, 49–50. https://doi.org/10.1038/368532a0

    Article  CAS  Google Scholar 

  48. Matsuda, H.; Seo, D.-S.; Yoshida, N.; Fujibayashi, K.; Kobayashi, S.; and Yabe, Y. Estimation of the static electricity and optical retardation produced by rubbing polyimide and polyamide films with different fabrics, Mol. Cyrst. Liq. Cryst., (1995), 264, 23–28. https://doi.org/10.1080/10587259508037298

    Article  CAS  Google Scholar 

  49. Singh, G.; Prakash, G. V.; Kaur, S.; Choudhary, A.; Biradar, and A. M. Molecular relaxation in homeotropically aligned ferroelectric liquid crystals. Physica B: Condensed Matter (2008), 403, 3316–3319. https://doi.org/10.1016/j.physb.2008.04.026

    Article  CAS  Google Scholar 

  50. Yaroshchuk, O.; Reznikov, Y. Photoalignment of liquid crystals: basics and current trends. J. Mater. Chem. (2012), 22, 286. https://doi.org/10.1039/C1JM13485J

    Article  CAS  Google Scholar 

  51. Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications, and toxicities. Arab. J. Chem. (2019), 12, 908–931. https://doi.org/10.1016/j.arabjc.2017.05.011 Quantum dots as liquid crystal dopants. J. Mater. Chem. (2012), 22, 22350–22365. https://doi.org/10.1039/C2JM33274D

  52. Jeevanandam, J.; Barhoum, A.; Chan, Y. S.; Dufresne, A.; Danquah, M. K. Review on nanoparticles and nanostructured materials: history, sources, toxicity, and regulations. Beilstein J. Nanotechnol., (2018), 9 1050–1074. https://doi.org/10.3762/bjnano.9.98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bisoyi, H. K.; Kumar, S. Liquid-crystal nanoscience: an emerging avenue of soft self-assembly. Chem. Soc. Rev. (2011), 40, 306–319. https://doi.org/10.1039/B901793N

    Article  CAS  PubMed  Google Scholar 

  54. (a) Prakash, J.; Choudhary, A.; Kumar, A.; Mehta, D. S.; Biradar, A. M. Nonvolatile memory effect based on gold nanoparticles doped ferroelectric liquid crystal. Appl. Phys. Lett. (2008), 93, 112904. https://doi.org/10.1063/1.2980037 (b) Kumar, A.; Prakash, J.; Mehta, D. S.; Biradar, A. M.; Haase, W. Enhanced photoluminescence in gold nanoparticles doped ferroelectric liquid crystals. Appl. Phys. Lett. (2009), 95, 023117. https://doi.org/10.1063/1.3179577

  55. Choudhary, A.; Singh, G.; Biradar, A. M. Advances in gold nanoparticle–liquid crystal composites. Nanoscale (2014), 6, 7743–7756. https://doi.org/10.1039/C4NR01325E

    Article  CAS  PubMed  Google Scholar 

  56. Singh, G.; Fisch, M. R.; Kumar, S. Emissivity and electrooptical properties of semiconducting quantum dots/rods and liquid crystal composites: a review. Rep. Prog. Phys. (2016), 79, 056502. https://doi.org/10.1088/0034-4885/79/5/056502

    Article  PubMed  Google Scholar 

  57. Singh, G.; Fisch, M. R.; Kumar, S. Tunable polarised fluorescence of quantum dot doped nematic liquid crystals. Liq. Cryst. (2017), 44, 444–452. https://doi.org/10.1080/02678292.2016.1217357

    Article  CAS  Google Scholar 

  58. Dierking, I. Nanomaterials in Liquid Crystals. Nanomaterials (2018), 8, 453. https://doi.org/10.3390/nano8070453

    Article  PubMed  PubMed Central  Google Scholar 

  59. Chen, W.-Z.; Tsai, Y.-T.; Lin, T.-H. Single-cell-gap trans-reflective liquid-crystal display based on photo- and nanoparticle-induced alignment effects. Opt. Lett. (2009), 34, 2545. https://doi.org/10.1364/OL.34.002545

    Article  CAS  PubMed  Google Scholar 

  60. Ahmad, F.; Jamil, M.; Lee, J. W.; Jeon, Y. J. Magnetically driven vertical alignment of liquid crystals by ferromagnetic particles. Liq. Cryst. (2015), 42, 233–239. https://doi.org/10.1080/02678292.2014.981603

    Article  CAS  Google Scholar 

  61. Zhao, D.; Zhou, W.; Cui, X.; Tian, Y.; Guo L.; Yang, H. Alignment of liquid crystals doped with nickel nanoparticles containing different morphologies. Adv. Mater. (2011), 23, 5779–5784. https://doi.org/10.1002/adma.201102611

    Article  CAS  PubMed  Google Scholar 

  62. Zhao, D.; Peng, Y.; Xu, L.; Zhou, W.; Wang, Q.; Guo, L. Liquid-Crystal Biosensor Based on Nickel-Nanosphere-Induced Homeotropic Alignment for the Amplified Detection of Thrombin. ACS Appl. Mater. Interfaces (2015), 7, 23418–23422. https://doi.org/10.1021/acsami.5b08924

    Article  CAS  PubMed  Google Scholar 

  63. Mirzaei, J.; Urbanski, M.; Kitzerow, H.-S.; Hegmann, T. Hydrophobic gold nanoparticles via silane conjugation: chemically and thermally robust nanoparticles as dopants for nematic liquid crystals. Phil. Trans. R. Soc. A (2013), 371, 20120256. https://doi.org/10.1098/rsta.2012.0256

    Article  PubMed  Google Scholar 

  64. Varshney, D.; Prakash, J.; and Singh, G. Indium tin oxide nanoparticles induced tunable dual alignment in nematic liquid crystal. J. Mol. Liq. (2023), 374, 121264. https://doi.org/10.1016/j.molliq.2023.121264

    Article  CAS  Google Scholar 

  65. Dierking, I.; Scalia, G.; and Morales, P. Liquid crystal-carbon nanotube dispersions. J. Appl. Phys. (2005), 97, 044309. https://doi.org/10.1063/1.1850606

    Article  Google Scholar 

  66. Lu, S. -Y.; Chien, L.-C. Carbon nanotube doped liquid crystal OCB cells: physical and electro-optical properties. Opt. Exp. (2008), 16, 12777. https://doi.org/10.1364/OE.16.012777

  67. Basu, R.; and Atwood, L. J. Homeotropic liquid crystal device employing vertically aligned carbon nanotube arrays as the alignment agent. Phys. Rev E (2020), 102, 022701. https://doi.org/10.1103/PhysRevE.102.022701

    Article  CAS  PubMed  Google Scholar 

  68. Kumar, A.; Singh, D. P.; and Singh, G. Recent progress and future perspectives on carbon-nanomaterial-dispersed liquid crystal composites. J. Phys. D: Appl. Phys. (2022), 55, 083002. https://doi.org/10.1088/1361-6463/ac2ced

    Article  CAS  Google Scholar 

  69. Dhar, R.; Pandey, A. S.; Pandey, M. B.; Kumar, S.; Dabrowski, R. Optimization of the Display Parameters of a Room Temperature Twisted Nematic Display Material by Doping Single-Wall Carbon Nanotubes. Appl. Phys. Exp. (2008), 1, 121501. https://doi.org/10.1143/APEX.1.121501

    Article  Google Scholar 

  70. Zhou, W.; Lin, L.; Zhao, D. Synthesis of Nickel Bowl-like Nanoparticles and Their Doping for Inducing Planar Alignment of a Nematic Liquid Crystal. J. Amer. Chem. Soc. (2011), 133, 8389–8391. https://doi.org/10.1021/ja201101p

    Article  CAS  Google Scholar 

  71. Wang, Q.; Shang, Y.; Yu, L.; Zou, C.; Yao, W.; Zhao, D.; Song, P.; Yang, H.; Guo, L. Facet-dependent Cu2O nanocrystals in manipulating alignment of liquid crystals and photomechanical behaviors. Nano Res. (2016), 9, 2581–2589. https://doi.org/10.1007/s12274-016-1144-4

    Article  CAS  Google Scholar 

  72. Zhao, D.; Guo, Y.; Bi, W.; Li, X.; Duan, R.; and Guo, L. Effects of CuInS2 nanoparticles on the alignment control of liquid crystals. Nano Research, (2022), 15, 7542–7548. https://doi.org/10.1007/s12274-022-4338-y

    Article  CAS  Google Scholar 

  73. Mishra, S.; Manjuladevi, V.; and Gupta, R. K. Zinc oleate nanorod-induced vertical alignment of nematic liquid crystal. ACS Omega (2023), 7, 46466–46474. https://doi.org/10.1021/acsomega.2c05196

    Article  Google Scholar 

  74. Lee, W. K.; Hwang, S. J.; Cho, M. J.; Park, H. G.; Han, J. W.; Song, S.; Jang, J. H.; Seo, D. S. CIS–ZnS quantum dots for self-aligned liquid crystal molecules with superior electro-optic properties. Nanoscale (2013), 5, 193–199. https://doi.org/10.1039/C2NR32458J

    Article  CAS  PubMed  Google Scholar 

  75. Chung, Y.-F.; Chen, M.-Z.; Yang, S.-H.; Jeng, S.-C. Tunable Surface Wettability of ZnO Nanoparticle Arrays for Controlling the Alignment of Liquid Crystals. ACS Appl. Mater. Interfaces (2015), 7, 9619–9624. https://doi.org/10.1021/acsami.5b01157

    Article  CAS  PubMed  Google Scholar 

  76. Reznikov, M.; Sharma, A.; Hegmann, T. Ink-Jet Printed Nanoparticle Alignment Layers: Easy Design and Fabrication of Patterned Alignment Layers for Nematic Liquid Crystals. Part. Part. Syst. Charact. (2014), 31, 257–265. https://doi.org/10.1002/ppsc.201300248

    Article  CAS  Google Scholar 

  77. Sharma, A.; Hofmann, D.; Hegmann, T. Patterned alignment of nematic liquid crystals generated by inkjet printing of gold nanoparticles and emissive carbon dots on both flexible polymer and rigid glass substrates. Liq. Cryst. (2016), 43, 828–838. https://doi.org/10.1080/02678292.2016.1145268

    Article  CAS  Google Scholar 

  78. Son, I.; Son, S.-R.; An, J.; Choi, J.-W.; Kim, S.; Lee, W. Y.; Lee, J. H. Photoluminescent surface-functionalized graphene quantum dots for spontaneous interfacial homeotropic orientation of liquid crystals. J. Mol. Liq. (2021), 332, 115901. https://doi.org/10.1016/j.molliq.2021.115901

    Article  CAS  Google Scholar 

  79. Dogra, A. R.; Sharma, V.; Khanra, P.; and Kumar, P. Evaporative deposition of SiO2 nanoparticles multilayer on ITO substrates and application for vertical alignment of liquid crystals-effect of dichroic dye. J. Phys: Conference Series, (2021), 2070, 012071.

    Google Scholar 

  80. Liu, Y.; Park, H. G.; Lee, J. H.; Jang, S. B.; Jung, Y. H.; Jeong, H. C.; Seo, D. S. Homogeneous liquid crystal alignment on ion beam-induced Y2Sn2O7 layers. IEEE Electron Devise Letters, (2015), 36, 363–365. https://doi.org/10.1109/LED.2015.2399505

    Article  Google Scholar 

  81. Russell, J. M.; Oh, S.; LaRue, I.; Zhou, O.; Samulski, E. T. Alignment of nematic liquid crystals using carbon nanotube films. Thin Solid Films (2006), 509, 53–57. https://doi.org/10.1016/j.tsf.2005.09.099

    Article  CAS  Google Scholar 

  82. Fu, W.; Liu, L.; Jiang, K.; Li, Q.; Fan, S. Super-aligned carbon nanotube films as aligning layers and transparent electrodes for liquid crystal displays. Carbon (2010), 48, 1876–1879. https://doi.org/10.1016/j.carbon.2010.01.026

    Article  CAS  Google Scholar 

  83. Chen, M. Z.; Yang, S. H.; and Jeng, S. C. Growth of ZnO nanorods and their applications for liquid crystal devices. ACS applied Nanomaterials, (2018), 1, 1879–1885. https://doi.org/10.1021/acsanm.8b00202

    Article  CAS  Google Scholar 

  84. Lim, Y. J.; Choi, Y. E.; Kang, S. W.; Kim, D. Y.; Lee, S. H.; Hahn, Y.-B. Vertical alignment of liquid crystals with zinc oxide nanorods. Nanotechnology (2013), 24, 345702. https://doi.org/10.1088/0957-4484/24/34/345702

    Article  PubMed  Google Scholar 

  85. Chen, M. Z.; Liquid crystal alignment on zinc oxide nanowires arrays for LCD applications. Optics Express (2013), 21, 29277–29282.

    Article  PubMed  Google Scholar 

  86. Supreet and Singh, G. Recent advances on cadmium free quantum dots-liquid crystal nanocomposites. Applied Materials Today (2020), 21, 100840. https://doi.org/10.1016/j.apmt.2020.100840

Download references

Acknowledgments

Ajay Kumar is thankful to the principal of D S College for his kind encouragement in the presented work. Gautam Singh thanks Amity University Uttar Pradesh, Noida, India, for its continuous support and encouragement in his research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gautam Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, A., Singh, G. (2024). Nanoparticles-Induced Alignment of Nematic Liquid Crystals for Tunable Electro-Optical Devices. In: Krishnamoorthy, S., Iniewski, K.(. (eds) Advances in Fabrication and Investigation of Nanomaterials for Industrial Applications . Springer, Cham. https://doi.org/10.1007/978-3-031-42700-8_4

Download citation

Publish with us

Policies and ethics