Skip to main content

Herausforderungen und Möglichkeiten in der Kommunikation für autonome Unterwasserfahrzeuge

  • Chapter
  • First Online:
KI-Technologie für Unterwasserroboter

Zusammenfassung

Drahtlose Kommunikation ist für autonome Unterwasserfahrzeuge (AUVs) unerlässlich, um Arbeitsanweisungen zu geben, gesammelte Daten weiterzuleiten oder mehrere AUVs, die in einem Schwarm arbeiten, zu koordinieren. Die Kommunikation in der Unterwasserumgebung ist jedoch unzuverlässig und erlaubt aufgrund hoher Störungen und schlechter Signalübertragungsbedingungen keine hohen Datenraten. In diesem Kapitel werden bestehende Konzepte für Unterwasserkommunikation sowohl aus der Sicht der Informationsübertragung als auch aus dem Netzwerkaspekt heraus überprüft. Die Einführung semantischer Kommunikation hilft, die Menge der übertragenen Daten zu reduzieren, indem semantische Nebeninformationen genutzt werden. Opportunistische Netzwerke ermöglichen eine Ende-zu-Ende-Datenweiterleitung ohne permanente Konnektivität und können erweitert werden, um die am besten geeignete Kommunikationstechnologie zu nutzen, wenn Daten mit gegebener Größe und Priorität weitergeleitet werden. Maschinelles Lernen (ML) hilft, Hintergrundinformationen zu speichern und zu klassifizieren, um die Effizienz der Kommunikation zu erhöhen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. Giodini S, van der Spek E, Dol H (2015) Underwater communications and the level of autonomy of AUVs, Hydro International

    Google Scholar 

  2. Vedachalam N, Ramesh R, Jyothi VBN, Prakash VD, Ramadass GA (2018) Autonomous underwater vehicles—challenging developments and technological maturity towards strategic swarm robotics systems. Marine Georesources Geotechnol 33(1):1–14

    Google Scholar 

  3. Champion BT, Joordens MA (2015) Underwater swarm robotics review. In: 10th system of systems engineering conference (SoSE 2015), S 111–116, San Antonio, USA, May 2015

    Google Scholar 

  4. Joordens MA, Jamshidi M (2010) Consensus control for a system of underwater swarm robots. IEEE Syst J 4(1):65–73

    Article  Google Scholar 

  5. Paul H, Fliege J, Dekorsy A (2013) In-network-processing: distributed consensus-based linear estimation. IEEE Commun Lett 17(1):59–62

    Article  Google Scholar 

  6. Shin B-S, Yukawa M, Cavalcante RLG, Dekorsy A (2018) Distributed adaptive learning with multiple kernels in diffusion networks. IEEE Trans Signal Process 66(21):5505–551

    Article  MathSciNet  MATH  Google Scholar 

  7. Wübben D, Paul H, Shin B-S, Xu G, Dekorsy A (2014) Distributed consensus-based estimation for small cell cooperative networks. In: 10th international workshop on broadband wireless access (BWA (2014) co-located with IEEE Globecom 2014. Austin, TX, USA, December, S 2014

    Google Scholar 

  8. Zeng Y, Zhang R, Lim TJ (2016) Wireless communications with unmanned aerial vehicles: opportunities and challenges. IEEE Commun Mag 54(5):36–42

    Article  Google Scholar 

  9. Liu L, Zhou S, Cui J-H (2008) Prospects and problems of wireless communication for underwater sensor networks. Wirel Commun Mobile Comput 8(8):977–994

    Article  Google Scholar 

  10. de Freitas PMCPC (2014) Evaluation of Wi-Fi underwater networks in freshwater. Master Thesis, Universidade do Porto

    Google Scholar 

  11. Akyildiz IF, Pompili D, Melodia T (2005) Underwater acoustic sensor networks: research challenges. Ad Hoc Netw 3(3):257–279

    Article  Google Scholar 

  12. Zhou S, Wang Z (2014) OFDM for underwater acoustic communications. Wiley, Chichester

    Google Scholar 

  13. Emokpae LE, Younis M (2012) Throughput analysis for shallow water communication utilizing directional antennas. IEEE J Sel Areas Commun 30(5):1006–1018

    Article  Google Scholar 

  14. Huang J, Zhou S, Willett P, Nonbinary LDPC coding for multicarrier underwater acoustic communication. IEEE J Sel Areas Commun 26(9):1684–1696

    Article  Google Scholar 

  15. Demirors E, Sklivanitis G, Melodia T, Batalama SN, Pados DA (2015) Software-defined underwater acoustic networks: toward a high-rate real-time reconfigurable modem. IEEE Communun Mag 53(11):64–71

    Article  Google Scholar 

  16. Arnon S, Kedar D (2009) Non-line-of-sight underwater optical wireless communication network. J Opt Soc Am A 26(3):530–539

    Article  Google Scholar 

  17. Akyildiz IF, Wang P, Sun Z (2015) Realizing underwater communication through magnetic induction. IEEE Communun Mag 53(11):42–48

    Article  Google Scholar 

  18. Allen GI, Matthews R, Wynn M (2001) Mitigation of platform generated magnetic noise impressed on a magnetic sensor mounted in an autonomous underwater vehicle. In: MTS/IEEE OCEANS (2001), S 63–71, Honolulu, USA, November 2001

    Google Scholar 

  19. Darehshoorzadeh A, Boukerche A (2015) Underwater sensor networks: a new challenge for opportunistic routing protocols. IEEE Communun Mag 53(11):98–107

    Article  Google Scholar 

  20. Xie P, Cui J-H, Lao L (2006) VBF: vector-based forwarding protocol for underwater sensor networks. In: Networking technologies, services, and protocols; performance of computer and communication networks; mobile and wireless communications systems (NETWORKING 2006), Lecture Notes in Computer Science, Bd 3976, S 1216–1221

    Google Scholar 

  21. Nicolaou N, See A, Xie P, Cui J-H, Maggiorini D, Improving the robustness of location-based routing for underwater sensor networks. In: OCEANS, (2007) Europe. Aberdeen, June, S 2007

    Google Scholar 

  22. Coutinho RWL, Boukerche A, Vieira LFM, Loureiro AAF (2014) GEDAR: geographic and opportunistic routing protocol with depth adjustment for mobile underwater sensor networks. In: IEEE international conference on communications (ICC 2014), S 251–256, Sydney, NSW, Australia, August 2014

    Google Scholar 

  23. Yan H, Shi Z, Cui J-H (2008) DBR: depth-based routing for underwater sensor networks. In: Networking 2008 Ad Hoc and sensor networks, wireless networks, next generation internet, S 1–13

    Google Scholar 

  24. Lee U, Wang P, Noh Y, Vieira LFM, Gerla M, Cui J-H (2010) Pressure routing for underwater sensor networks. In: IEEE INFOCOM, San Diego, USA March

    Google Scholar 

  25. Wang Z, Han G, Qin H, Zhang S, Sui Y (2018) An Energy-aware and void-avoidable routing protocol for underwater sensor networks. IEEE Access 6:7792–7801

    Article  Google Scholar 

  26. Dede J, Förster A et al (2018) Simulating opportunistic networks: survey and future directions. IEEE Commun Surv Tutor 20(2):1547–1573

    Article  Google Scholar 

  27. Zaman I, Haseeb M, Förster A (2018) Wireless underground sensor network Testbed: a case study on channel characterization. In: 14th international conference on wireless and mobile computing, networking and communications (WIMOB), Limassol, Cyprus

    Google Scholar 

  28. Zaman I, Gellhaar M, Dede J, Koehler H, Foerster A (2016) A new sensor node for underground monitoring. In: International workshop on practical issues in building sensor network applications (SenseApp), Dubai, UAE

    Google Scholar 

  29. Zaman I, Gellhaar M, DedeJ, KoehlerH, Foerster A (2016) Demo: design and evaluation of MoleNet for wireless underground sensor networks. In: IEEE local computers conference, Dubai, UAE

    Google Scholar 

  30. Zaman I, Föorster A, Mahmood A, Cawood F (2018) Finding trapped miners with wireless sensor networks. In: 5th international conference on information and communication technologies for disaster management (ICT-DM 2018), Sendai, Japan

    Google Scholar 

  31. Förster A, Muslim A, Udugama A (2018) TRAILS—a trace-based probabilistic mobility model. In: 21st ACM international conference on modelling. Analysis and simulation of wireless and mobile systems (MSWIM 2018). Montreal, QC, Canada, S 295–302

    Google Scholar 

  32. Shannon CE (1948) A mathematical theory of communication. Bell Syst Techn J 27:379–423

    Article  MathSciNet  MATH  Google Scholar 

  33. Weaver W (1949) The mathematical theory of communication, chapter Recent contributions to the mathematical theory of communication, S 1–16

    Google Scholar 

  34. Bao J, Basu P, Dean M, Partridge C, Swami A, Leland W, Hendler JA (2011) Towards a theory of semantic communication. In: IEEE 1st international network science workshop (NSW 2011), S 110–117, West Point, USA, June 2011

    Google Scholar 

  35. Hassanpour S, Wübben D, Dekorsy A (2018) A graph-based message passing approach for noisy source coding via information bottleneck principle. In: IEEE global communications conference (GLOBECOM 2018), Abu Dhabi, United Arab Emirates, December 2018

    Google Scholar 

  36. Hassanpour S, Wübben D, Dekorsy A (2018) On the equivalence of double maxima and KL-means for information bottleneck-based source coding. In: IEEE wireless communications and networking conference (WCNC 2018), Barcelona, Spain, April 2018

    Google Scholar 

  37. Monsees T, Wübben D, Dekorsy A (2019) Channel-optimized information bottleneck design for signal forwarding and discrete decoding in cloud-RAN. In: 12th international ITG conference on systems, communications and coding (SCC 2019), Rostock, Germany, February 2019

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Wübben .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Der/die Autor(en), exklusiv lizenziert an Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wübben, D., Könsgen, A., Udugama, A., Dekorsy, A., Förster, A. (2023). Herausforderungen und Möglichkeiten in der Kommunikation für autonome Unterwasserfahrzeuge. In: Kirchner, F., Straube, S., Kühn, D., Hoyer, N. (eds) KI-Technologie für Unterwasserroboter. Springer Vieweg, Cham. https://doi.org/10.1007/978-3-031-42369-7_7

Download citation

Publish with us

Policies and ethics