Skip to main content

Intelligente Haut – fortgeschrittene Materialien und Fertigung für einen modularen und vielseitigen Rumpf

  • Chapter
  • First Online:
KI-Technologie für Unterwasserroboter

Zusammenfassung

Der Rumpf oder die Haut autonomer Unterwasserfahrzeuge (AUVs) ist ein wesentliches Element, das eine Schutzschicht und eine hydrodynamisch effiziente Einkapselung der verschiedenen Systemkomponenten bietet sowie eine große Schnittstellenfläche mit der Umgebung. Diese grundlegenden Anforderungen stellen eine Reihe von Design-Herausforderungen dar, wie drucktolerante mechanische Stabilität, hydrodynamische Effizienz, Korrosions- und Bewuchsschutz. Aber diese Schnittstelle bietet auch eine Vielzahl von Möglichkeiten, die bisher nicht vollständig ausgeschöpft wurden. Das vorliegende Kapitel befasst sich mit diesen Herausforderungen und Möglichkeiten und identifiziert potenzielle neue Lösungen, die den Übergang von AUV-Rümpfen zu einer intelligenten Haut ermöglichen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. Albiez J et al (2015) FlatFish—a compact subsea-resident inspection AUV. OCEANS 2015—MTS/IEEE Washington, Washington, DC, S 1–8. https://doi.org/10.23919/oceans.2015.7404442

  2. Johansson B, Siesjö J, Furuholmen M (2010). Seaeye Sabertooth A Hybrid AUV/ROV offshore system. OCEANS 2010 MTS/IEEE SEATTLE, Seattle, WA, S 1–3. https://doi.org/10.1109/oceans.2010.5663842

  3. Hobson BW, Bellingham JG, Kieft B, McEwen R, Godin M, Zhang Y (2012). Tethys-class long range AUVs—extending the endurance of propeller-driven cruising AUVs from days to weeks. 2012 IEEE/OES Autonomous Underwater Vehicles (AUV), Southampton, S 1–8. https://doi.org/10.1109/auv.2012.6380735

  4. Furlong ME et al (2012) Autosub long range: a long range deep diving AUV for ocean monitoring. 2012 IEEE/OES Autonomous Underwater Vehicles (AUV), S 1–8. https://doi.org/10.1109/auv.2012.6380737

  5. Claus B, Bachmayer R (2016) Energy optimal depth control for long range underwater vehicles with applications to a hybrid underwater glider. Auton Robots 40(7):1307–1320

    Article  Google Scholar 

  6. Manley J, Willcox S (2010) The wave glider: a persistent platform for ocean science. OCEANS 2010 IEEE-Sydney, S 1–5

    Google Scholar 

  7. Haldeman CD et al (2016) Lessening biofouling on long-duration AUV flights: behavior modifications and lessons learned. OCEANS 2016 MTS/IEEE Monterey, S 1–8

    Google Scholar 

  8. Cetinić I et al (2009) Calibration procedure for Slocum glider deployed optical instruments. Opt Express 17(18):15420–15430. https://doi.org/10.1364/OE.17.015420

    Article  Google Scholar 

  9. Kirschner CM, Brennan AB (2012) Bio-inspired antifouling strategies. Annu Rev Mater Res 42:211–229

    Article  Google Scholar 

  10. Haras D (2006) Biofilms et altérations des matériaux: de l’analyse du phénomène aux stratégies de prévention. Mater. Tech. 93:s.27–s.41. https://doi.org/10.1051/mattech:2006003

    Article  Google Scholar 

  11. Rosenhahn A, Schilp S, Kreuzer HJ, Grunze M (2010) The role of “inert” surface chemistry in marine biofouling prevention. Phys Chem Chem Phys 12:4275–4286. https://doi.org/10.1039/C001968M

    Article  Google Scholar 

  12. Pawlik JR (1992) Chemical ecology of the settlement of marine invertebrates. Oceanogr Mar Biol Annu Rev 30:273–335. https://doi.org/10.1023/A:1020793726898

    Article  Google Scholar 

  13. Huggett MJ, Williamson JE, de Nys R, Kjelleberg S, Steinberg PD (2006) Larval settlement of the common Australian sea urchin Heliocidaris erythrogramma in response to bacteria from the surface of coralline algae. Oecologia 149:604–619. https://doi.org/10.1007/s00442-006-0470-8

    Article  Google Scholar 

  14. Schultz MP (2007) Effects of coating roughness and biofouling on ship resistance and powering. Biofouling 23(5):331–341. https://doi.org/10.1080/08927010701461974

    Article  MathSciNet  Google Scholar 

  15. Chambers LD, Stokes KR, Walsh FC, Wood RJK (2006) Modern approaches to marine antifouling coatings. Surf Coat Technol 201:3642–3652

    Article  Google Scholar 

  16. Finnie AA, Williams DN (2010) Paint and coatings technology for the control of marine fouling. Biofouling, pp 185–206. https://doi.org/10.1002/9781444315462.ch13

  17. Callow JA, Callow ME (2011) Trends in the development of environmentally friendly fouling-resistant marine coatings. Nature Commun 2:244

    Article  Google Scholar 

  18. Lejars M, Margaillan A, Bressy C (2012) Fouling release coatings: a nontoxic alternative to biocidal antifouling coatings. Chem Rev 112(8):4347–4390. https://doi.org/10.1021/cr200350v

    Article  Google Scholar 

  19. Bechert DW, Bruse M, Hage W, Meyer R (2000) Fluid mechanics of biological surfaces and their technological application. Naturwissenschaften 87:157–171

    Article  Google Scholar 

  20. Lee S-J, Lee S-H (2001) Flow field analysis of a turbulent boundary layer over a riblet surface. Exp Fluids 30:153–166. https://doi.org/10.1007/s003480000150

    Article  Google Scholar 

  21. Dean B, Bhushan B (2010) Shark-skin surfaces for fluid-drag reduction in turbulent flow: a review. Phil Trans R Soc A 368:4775–4806. https://doi.org/10.1098/rsta.2010.0201

    Article  Google Scholar 

  22. Stenzel V, Schreiner C, Brinkmann A, Stübing D (2016) Biomimetic approaches for ship drag reduction—feasible and efficient? In: 10th Symposium on high-performance marine vehicles, HIPER 2016: Cortona, Italy, 17–19 October 2016, S 131–140

    Google Scholar 

  23. Benschop HOG, Guerin AJ, Brinkmann A, Dale ML, Finnie AA, Breugem W-P, Clare AS, Stübing D, Price C, Reynolds KJ (2018) Drag-reducing riblets with fouling-release properties: development and testing. Biofouling 34(5):532–544. https://doi.org/10.1080/08927014.2018.1469747

    Article  Google Scholar 

  24. Gad-El-Hak M (1996) Compliant coatings: a decade of progress. Appl Mech. Rev 49:147–157. https://doi.org/10.1115/1.3101966

    Article  Google Scholar 

  25. Schrader L-U (2016) Drag reduction for ships: drawing inspiration from dolphins. In: 10th symposium on high-performance marine vehicles, HIPER 2016: Cortona, Italy, 17–19 October 2016, S 187–192

    Google Scholar 

  26. Stenzel V, Schreiner C, Föste V, Baumert M, Schrader L-U (submitted) Dolphin inspired compliant coatings for drag reduction of ships. J Coat Technol Res

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Bachmayer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Der/die Autor(en), exklusiv lizenziert an Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bachmayer, R., Stübing, D. (2023). Intelligente Haut – fortgeschrittene Materialien und Fertigung für einen modularen und vielseitigen Rumpf. In: Kirchner, F., Straube, S., Kühn, D., Hoyer, N. (eds) KI-Technologie für Unterwasserroboter. Springer Vieweg, Cham. https://doi.org/10.1007/978-3-031-42369-7_4

Download citation

Publish with us

Policies and ethics