Skip to main content

Sick in the Car, Sick in VR? Understanding How Real-World Susceptibility to Dizziness, Nausea, and Eye Strain Influences VR Motion Sickness

  • Conference paper
  • First Online:
Human-Computer Interaction – INTERACT 2023 (INTERACT 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14143))

Included in the following conference series:

Abstract

A substantial number of Virtual Reality (VR) users (studies report 30–80%) suffer from cyber sickness, a negative experience caused by a sensory mismatch of real and virtual stimuli. Prior research proposed different mitigation strategies. Yet, it remains unclear how effectively they work, considering users’ real-world susceptibility to motion sickness. We present a lab experiment, in which we assessed 146 users’ real-world susceptibility to nausea, dizziness, and eye strain before exposing them to a roller coaster ride with low or high visual resolution. We found that nausea is significantly lower for higher resolution but real-world motion susceptibility has a much stronger effect on dizziness, nausea, and eye strain. Our work points towards a need for research investigating the effectiveness of approaches to mitigate motion sickness so as not to include them from VR use and access to the metaverse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://store.steampowered.com/app/1346890/Motoride_Rollercoaster_VR/.

  2. 2.

    https://steamcommunity.com/app/1346890/reviews/?p=1 &browsefilter=mostrecent.

References

  1. Ames, S.L., Wolffsohn, J.S., Mcbrien, N.A.: The development of a symptom questionnaire for assessing virtual reality viewing using a head-mounted display. Optom. Vis. Sci. 82(3), 168–176 (2005)

    Article  Google Scholar 

  2. Atienza, R., Blonna, R., Saludares, M.I., Casimiro, J., Fuentes, V.: Interaction techniques using head gaze for virtual reality. In: 2016 IEEE Region 10 Symposium (TENSYMP), pp. 110–114. IEEE (2016)

    Google Scholar 

  3. Batmaz, A.U., Barrera Machuca, M.D., Sun, J., Stuerzlinger, W.: The effect of the vergence-accommodation conflict on virtual hand pointing in immersive displays. In: Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems, pp. 1–15 (2022)

    Google Scholar 

  4. Bos, J.E., Bles, W., Groen, E.L.: A theory on visually induced motion sickness. Displays 29(2), 47–57 (2008)

    Article  Google Scholar 

  5. Bos, J.E., MacKinnon, S.N., Patterson, A.: Motion sickness symptoms in a ship motion simulator: effects of inside, outside, and no view. Aviat. Space Environ. Med. 76(12), 1111–1118 (2005)

    Google Scholar 

  6. Buck, L., Paris, R., Bodenheimer, B.: Distance compression in the HTC Vive Pro: a quick revisitation of resolution. Frontiers in Virtual Reality 2, 728667 (2021)

    Article  Google Scholar 

  7. Carnegie, K., Rhee, T.: Reducing visual discomfort with HMDs using dynamic depth of field. IEEE Comput. Graphics Appl. 35(5), 34–41 (2015)

    Article  Google Scholar 

  8. Cha, Y.H., et al.: Motion sickness diagnostic criteria: consensus document of the classification committee of the bárány society. J. Vestib. Res. 31(5), 327–344 (2021)

    Article  Google Scholar 

  9. Chang, C.H., Stoffregen, T.A., Cheng, K.B., Lei, M.K., Li, C.C.: Effects of physical driving experience on body movement and motion sickness among passengers in a virtual vehicle. Exp. Brain Res. 239, 491–500 (2021)

    Article  Google Scholar 

  10. Cheung, B., Howard, I., Money, K.: Visually-induced sickness in normal and bilaterally labyrinthine-defective subjects. Aviat. Space Environ. Med. 62, 527–531 (1991)

    Google Scholar 

  11. Cho, H.J., Kim, G.J.: RideVR: reducing sickness for in-car virtual reality by mixed-in presentation of motion flow information. IEEE Access 10, 34003–34011 (2022). https://doi.org/10.1109/ACCESS.2022.3162221

    Article  Google Scholar 

  12. Chou, T.J., Ting, C.C.: The role of flow experience in cyber-game addiction. CyberPsychol. Beh. 6(6), 663–675 (2003)

    Article  Google Scholar 

  13. Davis, S., Nesbitt, K., Nalivaiko, E.: A systematic review of cybersickness. In: Proceedings of the 2014 Conference on Interactive Entertainment, pp. 1–9 (2014)

    Google Scholar 

  14. Dobie, T., McBride, D., Dobie, T., Jr., May, J.: The effects of age and sex on susceptibility to motion sickness. Aviat. Space Environ. Med. 72(1), 13–20 (2001)

    Google Scholar 

  15. Freiwald, J.P., Göbel, Y., Mostajeran, F., Steinicke, F.: The cybersickness susceptibility questionnaire: predicting virtual reality tolerance. In: Proceedings of the Conference on Mensch und Computer, pp. 115–118 (2020)

    Google Scholar 

  16. Garrido, L.E., et al.: Focusing on cybersickness: pervasiveness, latent trajectories, susceptibility, and effects on the virtual reality experience. Virtual Real. 26, 1347–1371 (2022)

    Article  Google Scholar 

  17. Golding, J., Rafiq, A., Keshavarz, B.: predicting individual susceptibility to visually induced motion sickness (vims) by questionnaire. Front. Virtual Real. 2, 576871 (2021)

    Article  Google Scholar 

  18. Golding, J.F.: Motion sickness susceptibility questionnaire revised and its relationship to other forms of sickness. Brain Res. Bull. 47(5), 507–516 (1998)

    Article  Google Scholar 

  19. Golding, J.F.: Motion sickness susceptibility. Auton. Neurosci. 129(1–2), 67–76 (2006)

    Article  Google Scholar 

  20. Golding, J.F., Gresty, M.A.: Motion sickness. Curr. Opin. Neurol. 18(1), 29–34 (2005)

    Article  Google Scholar 

  21. Hettinger, L.J., Riccio, G.E.: Visually induced motion sickness in virtual environments. Presence Teleoper. Virtual Environ. 1(3), 306–310 (1992)

    Article  Google Scholar 

  22. Hilken, T., de Ruyter, K., Chylinski, M., Mahr, D., Keeling, D.I.: Augmenting the eye of the beholder: exploring the strategic potential of augmented reality to enhance online service experiences. J. Acad. Mark. Sci. 45(6), 884–905 (2017)

    Article  Google Scholar 

  23. Irwin, J.: The pathology of sea-sickness. Lancet 118(3039), 907–909 (1881)

    Article  Google Scholar 

  24. Kennedy, R.S., Drexler, J., Kennedy, R.C.: Research in visually induced motion sickness. Appl. Ergon. 41(4), 494–503 (2010)

    Article  Google Scholar 

  25. Kennedy, R.S., Lane, N.E., Berbaum, K.S., Lilienthal, M.G.: Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness. Int. J. Aviat. Psychol. 3(3), 203–220 (1993)

    Article  Google Scholar 

  26. Keshavarz, B., Golding, J.F.: Motion sickness: current concepts and management. Curr. Opin. Neurol. 35(1), 107–112 (2022)

    Article  Google Scholar 

  27. Keshavarz, B., Hecht, H.: Stereoscopic viewing enhances visually induced motion sickness but sound does not. Presence 21(2), 213–228 (2012)

    Article  Google Scholar 

  28. Keshavarz, B., Murovec, B., Mohanathas, N., Golding, J.F.: The visually induced motion sickness susceptibility questionnaire (VIMSSQ): estimating individual susceptibility to motion sickness-like symptoms when using visual devices. Hum. Fact. 65, 107–124 (2021). p. 00187208211008687

    Article  Google Scholar 

  29. Kim, H.K., Park, J., Choi, Y., Choe, M.: Virtual reality sickness questionnaire (VRSQ): motion sickness measurement index in a virtual reality environment. Appl. Ergon. 69, 66–73 (2018)

    Article  Google Scholar 

  30. Kim, Y.Y., Kim, H.J., Kim, E.N., Ko, H.D., Kim, H.T.: Characteristic changes in the physiological components of cybersickness. Psychophysiology 42(5), 616–625 (2005)

    Google Scholar 

  31. Knight, M.M., Arns, L.L.: The relationship among age and other factors on incidence of cybersickness in immersive environment users. In: Proceedings of the 3rd Symposium on Applied Perception in Graphics and Visualization. APGV 2006, New York, NY, USA, pp. 162. Association for Computing Machinery (2006). https://doi.org/10.1145/1140491.1140539,https://doi.org/10.1145/1140491.1140539

  32. Kohl, R.L.: Sensory conflict theory of space motion sickness: an anatomical location for the neuroconflict. Aviat. Space Environ. Med. 54, 464–465 (1983)

    Google Scholar 

  33. Kolasinski, E.M.: Simulator sickness in virtual environments, vol. 1027. US Army Research Institute for the Behavioral and Social Sciences (1995)

    Google Scholar 

  34. Laugwitz, B., Held, T., Schrepp, M.: Construction and evaluation of a user experience questionnaire. In: Holzinger, A. (ed.) USAB 2008. LNCS, vol. 5298, pp. 63–76. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89350-9_6

    Chapter  Google Scholar 

  35. LaViola, J.J., Jr.: A discussion of cybersickness in virtual environments. ACM SIGCHI Bull. 32(1), 47–56 (2000)

    Article  Google Scholar 

  36. McGill, M., Ng, A., Brewster, S.A.: How visual motion cues can influence sickness for in-car VR. In: Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in Computing Systems. CHI EA 2017, p. 469, New York, NY, USA. Association for Computing Machinery (2017). https://doi.org/10.1145/3027063.3049790

  37. Mittelstaedt, H.: A new solution to the problem of the subjective vertical. Naturwissenschaften 70(6), 272–281 (1983)

    Article  MathSciNet  Google Scholar 

  38. Nalivaiko, E., Davis, S.L., Blackmore, K.L., Vakulin, A., Nesbitt, K.V.: Cybersickness provoked by head-mounted display affects cutaneous vascular tone, heart rate and reaction time. Physiol. Beh. 151, 583–590 (2015)

    Article  Google Scholar 

  39. Oman, C.M.: Motion sickness: a synthesis and evaluation of the sensory conflict theory. Can. J. Physiol. Pharmacol. 68(2), 294–303 (1990)

    Article  Google Scholar 

  40. Paillard, A., et al.: Motion sickness susceptibility in healthy subjects and vestibular patients: effects of gender, age and trait-anxiety. J. Vestib. Res. 23(4–5), 203–209 (2013)

    Article  Google Scholar 

  41. Park, S., Mun, S., Ha, J., Kim, L.: Non-contact measurement of motion sickness using pupillary rhythms from an infrared camera. Sensors 21(14), 4642 (2021)

    Article  Google Scholar 

  42. Rauschnabel, P.A., Felix, R., Hinsch, C., Shahab, H., Alt, F.: What is XR? towards a framework for augmented and virtual reality. Comput. Hum. Beh. 133, 107289 (2022). https://doi.org/10.1016/j.chb.2022.107289, https://www.sciencedirect.com/science/article/pii/S074756322200111X

  43. Reason, J., Brand, J.: Motion Sickness. Academic Press, London, New York, San Francisco (1975)

    Google Scholar 

  44. Rebenitsch, L., Owen, C.: Individual variation in susceptibility to cybersickness. In: Proceedings of the 27th Annual ACM Symposium on User Interface Software and Technology. UIST 2014, pp. 309–317, New York, NY, USA. Association for Computing Machinery (2014). https://doi.org/10.1145/2642918.2647394

  45. Rebenitsch, L., Owen, C.: Review on cybersickness in applications and visual displays. Virt. Real. 20(2), 101–125 (2016)

    Article  Google Scholar 

  46. Rolnick, A., Lubow, R.: Why is the driver rarely motion sick? The role of controllability in motion sickness. Ergonomics 34(7), 867–879 (1991)

    Article  Google Scholar 

  47. Schrepp, M., Hinderks, A., Thomaschewski, J.: Applying the user experience questionnaire (UEQ) in different evaluation scenarios. In: Marcus, A. (ed.) DUXU 2014. LNCS, vol. 8517, pp. 383–392. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07668-3_37

    Chapter  Google Scholar 

  48. Singla, A., Fremerey, S., Robitza, W., Raake, A.: Measuring and comparing QoE and simulator sickness of omnidirectional videos in different head mounted displays. In: 2017 Ninth International Conference on Quality of Multimedia Experience (QoMEX), pp. 1–6. IEEE (2017)

    Google Scholar 

  49. Solimini, A.G., Mannocci, A., Di Thiene, D., La Torre, G.: A survey of visually induced symptoms and associated factors in spectators of three dimensional stereoscopic movies. BMC Public Health 12, 1–11 (2012)

    Article  Google Scholar 

  50. Somrak, A., Humar, I., Hossain, M.S., Alhamid, M.F., Hossain, M.A., Guna, J.: Estimating VR sickness and user experience using different HMD technologies: an evaluation study. Futur. Gener. Comput. Syst. 94, 302–316 (2019)

    Article  Google Scholar 

  51. Stanney, K.M., Hale, K.S., Nahmens, I., Kennedy, R.S.: What to expect from immersive virtual environment exposure: influences of gender, body mass index, and past experience. Hum. Factors 45(3), 504–520 (2003)

    Article  Google Scholar 

  52. Stanney, K.M., Kennedy, R.S., Drexler, J.M.: Cybersickness is not simulator sickness. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 41, pp. 1138–1142. SAGE Publications Sage CA, Los Angeles (1997)

    Google Scholar 

  53. Stauffert, J.P., Niebling, F., Latoschik, M.E.: Effects of latency jitter on simulator sickness in a search task. In: 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pp. 121–127. IEEE (2018)

    Google Scholar 

  54. Turner, M.: Motion sickness in public road transport: passenger behaviour and susceptibility. Ergonomics 42(3), 444–461 (1999)

    Article  Google Scholar 

  55. Venkatesh, V., Thong, J.Y., Xu, X.: Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology. MIS Quart. 36, 157–178 (2012)

    Article  Google Scholar 

  56. Walton, N., Spencer, T., Cowings, P., Toscano, W.B.: Autogenic feedback training exercise: controlling physiological responses to mitigate motion sickness. Technical report (2018)

    Google Scholar 

  57. Wang, J., Shi, R., Xiao, Z., Qin, X., Liang, H.N.: Effect of render resolution on gameplay experience, performance, and simulator sickness in virtual reality games. Proc. ACM Comput. Graph. Interact. Tech. 5(1), 1–15 (2022)

    Article  Google Scholar 

  58. Warwick-Evans, L., Symons, N., Fitch, T., Burrows, L.: Evaluating sensory conflict and postural instability. Theories of motion sickness. Brain Res. Bull. 47(5), 465–469 (1998)

    Article  Google Scholar 

  59. Weech, S., Kenny, S., Barnett-Cowan, M.: Presence and cybersickness in virtual reality are negatively related: a review. Front. Psychol. 10, 158 (2019)

    Article  Google Scholar 

  60. Zielasko, D.: Subject 001-a detailed self-report of virtual reality induced sickness. In: 2021 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), pp. 165–168. IEEE (2021)

    Google Scholar 

  61. Zou, W., Yang, L., Yang, F., Ma, Z., Zhao, Q.: The impact of screen resolution of HMD on perceptual quality of immersive videos. In: 2020 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), pp. 1–6. IEEE (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Hein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hein, O., Rauschnabel, P., Hassib, M., Alt, F. (2023). Sick in the Car, Sick in VR? Understanding How Real-World Susceptibility to Dizziness, Nausea, and Eye Strain Influences VR Motion Sickness. In: Abdelnour Nocera, J., Kristín Lárusdóttir, M., Petrie, H., Piccinno, A., Winckler, M. (eds) Human-Computer Interaction – INTERACT 2023. INTERACT 2023. Lecture Notes in Computer Science, vol 14143. Springer, Cham. https://doi.org/10.1007/978-3-031-42283-6_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-42283-6_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-42282-9

  • Online ISBN: 978-3-031-42283-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics