Skip to main content

Simulative and Empirical Investigation of Test Specimen Geometries for the Determination of Forming Limit States in the Tensile-Compression Range for Austenitic Stainless Steel Foil Material

  • Conference paper
  • First Online:
Proceedings of the 14th International Conference on the Technology of Plasticity - Current Trends in the Technology of Plasticity (ICTP 2023)

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Included in the following conference series:

  • 808 Accesses

Abstract

In bipolar plate production, extreme thin foil materials are becoming increasingly important due to the trend towards high-energy dense fuel cells. For a better of the material behavior and component failures, finite element simulations are used. In order to achieve an expressive numerical representation of the forming process, the behavior of material failure in sheet metal forming is described by forming limit curves (FLC). However, especially for thin metal foils, proven testing methods such as the Nakazima test are not applicable because the specimens start wrinkling or fail outside the defect zone specified in the norm. While there are alternative testing methods for the detection of the pure tension area of the FLC, there is no applicable testing method for the evaluation of the forming limit in the tensile-compression zone. Therefore, in this paper simulations as well as physical tests were carried out to define a suitable specimen geometry for the characterization of stainless steel foil (1.4404) with a thickness of 0.1 mm using a scaled Nakazima set up. The simulation results showed that by decreasing the parallel web length as well as the fillet radius the equivalent strain maximum is shifted towards the specimen center. This observation is supported by the physical tests where necking occurred in the specimen center. Additionally to the position of failure, first investigations in physical testing showed maximum strain ratios of \({\upvarepsilon }_{1}\) = 0.23 in major strain and \({\upvarepsilon }_{2}\) = −0.095 in minor strain. The strain ratio therefore represents the uniaxial tension area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beyer, U., Prostmann, S., Baum, C., Müller, C.: Produktion der PEM-syteme, hochskalierung, rollout. In: Neugebauer, R. (ed.) Wasserstofftechnologien, pp. 297–330. Springer Vieweg, Berlin, Heidelberg (2022)

    Chapter  Google Scholar 

  2. Nakazima, K., Kikuma, T., Hasuka, K.: Study on the formability of Steel Sheet. Yawata Technical Report No. 264: pp. 141–154 (1968)

    Google Scholar 

  3. Marciniak, Z., Kuczynski, K.: Limit strains in the process of stech-forming sheet metal. Int. J. Mech. Sci 9, 609–620 (1967)

    Article  Google Scholar 

  4. ISO 12004 Metallic materials – Sheet and strip – Determination of forming-limit curves for sheet and strip – Part 2: Determination of forming-limit curves in the laboratory (ISO 12004-2:2021); German version EN ISO 12004-2:2021 (2021)

    Google Scholar 

  5. Hasek, V.: Anwendung von Grenzformänderungsschaubildern. Industrie-Anzeiger 99. Nr. 20 (1977)

    Google Scholar 

  6. Hasek, V.: Untersuchung und theoretische Beschreibung wichtiger Einflussgrößen auf das Grenzformänderungsschaubild. Bleche Rohre Profile 25 Auflage 5, Teil 1 (1978)

    Google Scholar 

  7. Hasek, V.: Untersuchung und theoretische Beschreibung wichtiger Einflussgrößen auf das Grenzformänderungsschaubild. Bleche Rohre Profile 25 Auflage 5, Teil 2 (1978)

    Google Scholar 

  8. Hasek, V.: Untersuchung und theoretische Beschreibung wichtiger Einflussgrößen auf das Grenzformänderungsschaubild. Bleche Rohre Profile 25 Auflage 5, Teil 3 (1978)

    Google Scholar 

  9. Hasek, V.: Untersuchung und theoretische Beschreibung wichtiger Einflussgrößen auf das Grenzformänderungsschaubild. Bleche Rohre Profile 25 Auflage 5, Teil 4 (1978)

    Google Scholar 

  10. Hasek, V., Lange, K.: Grenzformänderungsschaubild und seine Anwendungen bei Tiefzieh- und Streckziehvorgängen. Zeitschrift für industrielle Fertigung, 70 (1980)

    Google Scholar 

  11. Bong, H.J., Barlat, F., Lee, M.-G., Ahn, D.C.: The forming limit diagram of ferritic stainless steel sheet: experiment and modeling. Int. J. Mechanical Sci. 64, 1–10 (2012)

    Article  Google Scholar 

  12. Bauer, A.: Experimentelle und numerische Untersuchungen zur Analyse der umformtechnischen Herstellung metallischer Bipolarplatten. Dissertation, Technische Universität Chemnitz (2020)

    Google Scholar 

  13. Fiedler, M., Kittner, K., Awiszus, B.: Production of metallic bipolarplates made of stainless steel by incremental hollow embossing using rollers. Eng. Proc. 26, 15 (2022)

    Google Scholar 

  14. Zhang, Y., Xie, C.Y., Yuan, Z.J., Tang, X.J., Zhang, G.: Forming Limit Curves of Ultra-Thin Sheet Metal for High-Speed Nakajima Test (2022)

    Google Scholar 

  15. Veenaas, S., Behrens, G., Kröger, K., Vollertsen, F.: Determination of forming limit diagrams for thin foil materials based on scaled Nakajima test. Appl. Mech. Mater. 794, 190–198 (2015)

    Article  Google Scholar 

  16. ISO 16808 Metallic materials - Sheet and strip - Determination of biaxial stress-strain curve by means of bulge test with optical measuring systems (ISO 16808:2022); German version EN ISO 16808:2022 (2022)

    Google Scholar 

  17. Marciniak, Z., Kuczynski, J.: Limit strain in the processes of stretch-forming sheet metal. Int J Mech Sci 9, 609–612 (1967)

    Article  Google Scholar 

  18. Transvalor Homepage. FORGE® NxT 3.2 Online Help (docs.transvalor.com/forge/en/nct3_2/). Accessed 26 Feb 2023

    Google Scholar 

Download references

Acknowledgments

This research was funded by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation; Project number 278868966 – TRR 188, projects A06; Damage Controlled Forming Processes). Further, the authors would like to thank the Zapp Precision Metal GmbH for providing the tested foil material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Sommer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sommer, J., Müller, M., Herrig, T., Bergs, T. (2024). Simulative and Empirical Investigation of Test Specimen Geometries for the Determination of Forming Limit States in the Tensile-Compression Range for Austenitic Stainless Steel Foil Material. In: Mocellin, K., Bouchard, PO., Bigot, R., Balan, T. (eds) Proceedings of the 14th International Conference on the Technology of Plasticity - Current Trends in the Technology of Plasticity. ICTP 2023. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-42093-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-42093-1_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-42092-4

  • Online ISBN: 978-3-031-42093-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics