Skip to main content

Catalyst in Action

  • Chapter
  • First Online:
Value-added Products from Algae

Abstract

Algae exhibit distinguishing potential of producing various products from fuels to wide range of value-added products, described in the present book as phycochemicals. Few decades of research analyzed several pathways of converting microalgal biomass into bioproducts. The product conversion efficiency, sustainability, and economics of the production processes depend on the type of reactions opted and catalyst used for producing the targeted product. Catalyst plays vital role in overall economics and yield of the target product. For biofuel production, chemical and biological catalysts were extensively researched. The inherent disadvantages of homogeneous catalysts include tough separation from the reaction system and thermal instability which increased the heterogeneous catalyst applications. On the other hand, green catalysts are increasingly attractive that are mainly made from biomass, especially enzymes which are effective and environmentally friendly. The term “phycocatalysts” can be identified as the catalysts made from algal biomass and are emerging recently due to their exquisite catalytic potential and acting as another value-added choice for integrated microalgal biorefinery. Moreover, both nanocatalysts and biocatalysts are widely attractive due to plentiful of advantages such as easy synthesis, simple disposal, and high reusability, along with enhanced yield of the desired product. Deep eutectic solvent (DES) and cyanobacteria which are recent intrigue in the field of catalysis were also discussed in the chapter. Thus, catalysts have become indispensable in algal biomass conversion which influences the yield of every algal product synthesis/recovery which have been elucidated elaborately in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abomohra A, Elsayed M, Esakkimuthu S, El-Sheekh M, Hanelt D (2020) Potential of fat, oil and grease (FOG) for biodiesel production: a critical review on the recent progress and future perspectives. Prog Energy Combust Sci 81:100868. https://doi.org/10.1016/j.pecs.2020.100868

    Article  Google Scholar 

  • Abomohra A, Sheikh HMA, El-Naggar AH, Wang Q (2021) Microwave vacuum co-pyrolysis of waste plastic and seaweeds for enhanced crude bio-oil recovery: experimental and feasibility study towards industrialization. Renew Sust Energ Rev 149:111335. https://doi.org/10.1016/J.RSER.2021.111335

    Article  CAS  Google Scholar 

  • Ahmad F, Khan AU, Yasar A (2013) Transesterification of oil extracted from different species of algae for biodiesel production. African J Environ Sci Technol 7:358–364

    Article  Google Scholar 

  • Ahmed I, Hasan Z, Khan NA, Jhung SH (2013) Adsorptive denitrogenation of model fuels with porous metal-organic frameworks (MOFs): effect of acidity and basicity of MOFs. Appl Catal B Environ 129:123–129

    Article  CAS  Google Scholar 

  • Alamsyah G, Albels VA, Sahlan M, Hermansyah H (2017) Effect of chitosan’s amino group in adsorption-crosslinking immobilization of lipase enzyme on resin to catalyze biodiesel synthesis. Energy Procedia 136:47–52

    Article  CAS  Google Scholar 

  • Aliyu A, Lee JGM, Harvey AP (2021) Microalgae for biofuels: a review of thermochemical conversion processes and associated opportunities and challenges. Bioresour Technol Rep 15:100694

    Article  CAS  Google Scholar 

  • Almutairi AW (2022) Full utilization of marine microalgal hydrothermal liquefaction liquid products through a closed-loop route: towards enhanced bio-oil production and zero-waste approach. 3 Biotech 12:209. https://doi.org/10.1007/s13205-022-03262-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Annamalai S, Shin WS (2023) Algae-derived metal-free boron-doped biochar acts as a catalyst for the activation of peroxymonosulfate toward the degradation of diclofenac. Environ Pollut 331:121850

    Article  CAS  PubMed  Google Scholar 

  • Aryati WD, Azka KM, Mun’im A (2020) Ultrasonic-assisted extraction using a betaine-based natural deep eutectic solvent for resveratrol extraction from melinjo (Gnetum gnemon) seeds. Int J Appl Pharm 12(Special Issue 1):26–31

    Article  CAS  Google Scholar 

  • Azizi K, Moraveji MK, Najafabadi HA (2018) A review on bio-fuel production from microalgal biomass by using pyrolysis method. Renew Sust Energ Rev 82:3046–3059

    Article  CAS  Google Scholar 

  • Babich IV, Van der Hulst M, Lefferts L, Moulijn JA, O’Connor P, Seshan K (2011) Catalytic pyrolysis of microalgae to high-quality liquid bio-fuels. Biomass Bioenergy 35:3199–3207

    Article  CAS  Google Scholar 

  • Bach Q-V, Chen W-H (2017) Pyrolysis characteristics and kinetics of microalgae via thermogravimetric analysis (TGA): a state-of-the-art review. Bioresour Technol 246:88–100

    Article  CAS  PubMed  Google Scholar 

  • Banerjee S, Rout S, Banerjee S, Atta A, Das D (2019) Fe2O3 nanocatalyst aided transesterification for biodiesel production from lipid-intact wet microalgal biomass: a biorefinery approach. Energy Convers Manag 195:844–853

    Article  CAS  Google Scholar 

  • Baskar G, Gurugulladevi A, Nishanthini T, Aiswarya R, Tamilarasan K (2017) Optimization and kinetics of biodiesel production from Mahua oil using manganese doped zinc oxide nanocatalyst. Renew Energy 103:641–646

    Article  CAS  Google Scholar 

  • Beal CM, Stillwell AS, King CW, Cohen SM, Berberoglu H, Bhattarai RP, Connelly RL, Webber ME, Hebner RE (2012) Energy return on investment for algal biofuel production coupled with wastewater treatment. Water Environ Res 84:692–710

    Article  CAS  PubMed  Google Scholar 

  • Bhardwaj N, Agrawal K, Verma P (2020) Algal biofuels: an economic and effective alternative of fossil fuels. In: Microbial strategies for techno-economic biofuel production. Springer, Berlin, pp 207–227

    Chapter  Google Scholar 

  • Bharti P, Singh B, Dey RK (2019) Process optimization of biodiesel production catalyzed by CaO nanocatalyst using response surface methodology. J Nanostructure Chem 9:269–280

    Article  Google Scholar 

  • Biller P, Ross AB (2011) Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content. Bioresour Technol 102:215–225

    Article  CAS  PubMed  Google Scholar 

  • Biswas B, Kumar AA, Bisht Y, Singh R, Kumar J, Bhaskar T (2017) Effects of temperature and solvent on hydrothermal liquefaction of Sargassum tenerrimum algae. Bioresour Technol 242:344–350

    Article  CAS  PubMed  Google Scholar 

  • Biswas B, Kumar A, Fernandes AC, Saini K, Negi S, Muraleedharan UD, Bhaskar T (2020) Solid base catalytic hydrothermal liquefaction of macroalgae: effects of process parameter on product yield and characterization. Bioresour Technol 307:123232

    Article  CAS  PubMed  Google Scholar 

  • Borrelli GM, Trono D (2015) Recombinant lipases and phospholipases and their use as biocatalysts for industrial applications. Int J Mol Sci 16:20774–20840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown TM, Duan P, Savage PE (2010) Hydrothermal liquefaction and gasification of Nannochloropsis sp. Energy Fuel 24:3639–3646

    Article  CAS  Google Scholar 

  • Canakci M, Van Gerpen J (1999) Biodiesel production via acid catalysis. Trans ASAE 42:1203

    Article  CAS  Google Scholar 

  • Cao L (2005) Immobilised enzymes: science or art? Curr Opin Chem Biol 9:217–226

    Article  CAS  PubMed  Google Scholar 

  • Cao B, Yuan J, Jiang D, Wang S, Barati B, Hu Y, Yuan C, Gong X, Wang Q (2021) Seaweed-derived biochar with multiple active sites as a heterogeneous catalyst for converting macroalgae into acid-free biooil containing abundant ester and sugar substances. Fuel 285:119164

    Article  CAS  Google Scholar 

  • Caporgno MP, Pruvost J, Legrand J, Lepine O, Tazerout M, Bengoa C (2016) Hydrothermal liquefaction of Nannochloropsis oceanica in different solvents. Bioresour Technol 214:404–410

    Article  CAS  PubMed  Google Scholar 

  • Castello D, Haider MS, Rosendahl LA (2019) Catalytic upgrading of hydrothermal liquefaction biocrudes: different challenges for different feedstocks. Renew Energy 141:420–430

    Article  CAS  Google Scholar 

  • Chakraborty I, Bhowmick GD, Ghosh D, Dubey BK, Pradhan D, Ghangrekar MM (2020) Novel low-cost activated algal biochar as a cathode catalyst for improving performance of microbial fuel cell. Sustain Energy Technol Assessments 42:100808

    Article  Google Scholar 

  • Chen Y, Wu Y, Hua D, Li C, Harold MP, Wang J, Yang M (2015) Thermochemical conversion of low-lipid microalgae for the production of liquid fuels: challenges and opportunities. RSC Adv 5:18673–18701

    Article  CAS  Google Scholar 

  • Chen W, Yang H, Chen Y, Xia M, Chen X, Chen H (2017) Transformation of nitrogen and evolution of N-containing species during algae pyrolysis. Environ Sci Technol 51:6570–6579

    Article  CAS  PubMed  Google Scholar 

  • Cheng F, Li X (2018) Preparation and application of biochar-based catalysts for biofuel production. Catalysts 8:346

    Article  Google Scholar 

  • Chisti Y (2013) Constraints to commercialization of algal fuels. J Biotechnol 167:201–214

    Article  CAS  PubMed  Google Scholar 

  • Cui G, Lv M, Yang D (2019) Efficient CO2 absorption by azolide-based deep eutectic solvents. Chem Commun 55:1426–1429

    Article  CAS  Google Scholar 

  • Dabros TMH, Stummann MZ, Høj M, Jensen PA, Grunwaldt J-D, Gabrielsen J, Mortensen PM, Jensen AD (2018) Transportation fuels from biomass fast pyrolysis, catalytic hydrodeoxygenation, and catalytic fast hydropyrolysis. Prog Energy Combust Sci 68:268–309

    Article  Google Scholar 

  • Davoodbasha M, Pugazhendhi A, Kim J-W, Lee S-Y, Nooruddin T (2021) Biodiesel production through transesterification of Chlorella vulgaris: synthesis and characterization of CaO nanocatalyst. Fuel 300:121018

    Article  CAS  Google Scholar 

  • Dehghani S, Haghighi M (2019) Sono-dispersed MgO over cerium-doped MCM-41 nanocatalyst for biodiesel production from acidic sunflower oil: surface evolution by altering Si/Ce molar ratios. Waste Manag 95:584–592

    Article  CAS  PubMed  Google Scholar 

  • Deng X, Fang Z, Liu Y, Yu C-L (2011) Production of biodiesel from Jatropha oil catalyzed by nanosized solid basic catalyst. Energy 36:777–784

    Article  CAS  Google Scholar 

  • Déniel M, Haarlemmer G, Roubaud A, Weiss-Hortala E, Fages J (2016) Energy valorisation of food processing residues and model compounds by hydrothermal liquefaction. Renew Sust Energ Rev 54:1632–1652

    Article  Google Scholar 

  • DiCosimo R, McAuliffe J, Poulose AJ, Bohlmann G (2013) Industrial use of immobilized enzymes. Chem Soc Rev 42:6437–6474

    Article  CAS  PubMed  Google Scholar 

  • Dong J, Lu JJ, Li GB, Song LR (2013) Influences of a submerged macrophyte on colony formation and growth of a green alga. Aquat Biol 19:265–274

    Article  Google Scholar 

  • Duan P, Savage PE (2011a) Hydrothermal liquefaction of a microalga with heterogeneous catalysts. Ind Eng Chem Res 50:52–61. https://doi.org/10.1021/ie100758s

    Article  CAS  Google Scholar 

  • Duan P, Savage PE (2011b) Catalytic treatment of crude algal bio-oil in supercritical water: optimization studies. Energy Environ Sci 4:1447–1456

    Article  CAS  Google Scholar 

  • Duan P, Bai X, Xu Y, Zhang A, Wang F, Zhang L, Miao J (2013) Catalytic upgrading of crude algal oil using platinum/gamma alumina in supercritical water. Fuel 109:225–233

    Article  CAS  Google Scholar 

  • Duan P-G, Yang S-K, Xu Y-P, Wang F, Zhao D, Weng Y-J, Shi X-L (2018) Integration of hydrothermal liquefaction and supercritical water gasification for improvement of energy recovery from algal biomass. Energy 155:734–745

    Article  CAS  Google Scholar 

  • Durak H, Aysu T (2016a) Structural analysis of bio-oils from subcritical and supercritical hydrothermal liquefaction of Datura stramonium L. J Supercrit Fluids 108:123–135

    Article  CAS  Google Scholar 

  • Durak H, Aysu T (2016b) Thermochemical liquefaction of algae for bio-oil production in supercritical acetone/ethanol/isopropanol. J Supercrit Fluids 111:179–198

    Article  CAS  Google Scholar 

  • Durak H, Genel S (2020) Catalytic hydrothermal liquefaction of Lactuca scariola with a heterogeneous catalyst: the investigation of temperature, reaction time and synergistic effect of catalysts. Bioresour Technol 309:123375

    Article  CAS  PubMed  Google Scholar 

  • El-Hefnawy ME, Alhayyani S, Ismail A, El-Sherbiny M, Al-Harbi M, Abomohra A, Sakran M, Zidan N (2023) Integrated approach for enhanced crude bio-oil yield from microalgae cultivated on the aqueous phase of hydrothermal co-liquefaction with agar-free seaweed residues. J Clean Prod 392:136286. https://doi.org/10.1016/j.jclepro.2023.136286

    Article  CAS  Google Scholar 

  • Elliott DC, Hart TR, Schmidt AJ, Neuenschwander GG, Rotness LJ, Olarte MV, Zacher AH, Albrecht KO, Hallen RT, Holladay JE (2013) Process development for hydrothermal liquefaction of algae feedstocks in a continuous-flow reactor. Algal Res 2:445–454

    Article  Google Scholar 

  • Esakkimuthu S, Wang S (2022) Physical stress for enhanced biofuel production from microalgae. In: Handbook of algal biofuels. Elsevier, Amsterdam, pp 451–475

    Chapter  Google Scholar 

  • Esakkimuthu S, Krishnamurthy V, Govindarajan R, Swaminathan K (2016) Augmentation and starvation of calcium, magnesium, phosphate on lipid production of Scenedesmus obliquus. Biomass Bioenergy 88:126–134

    Article  CAS  Google Scholar 

  • Esakkimuthu S, Krishnamurthy V, Wang S, Abomohra A, Shanmugam S, Ramakrishnan SG, Subrmaniam S, Swaminathan K (2019) Simultaneous induction of biomass and lipid production in Tetradesmus obliquus BPL16 through polysorbate supplementation. Renew Energy 140:807

    Article  CAS  Google Scholar 

  • Esakkimuthu S, Krishnamurthy V, Wang S, Hu X, Swaminathan K, Abomohra A (2020) Application of p-coumaric acid for extraordinary lipid production in Tetradesmus obliquus: a sustainable approach towards enhanced biodiesel production. Renew Energy 157:368–376

    Article  CAS  Google Scholar 

  • Faisal S, Ebaid R, Xiong M, Huang J, Wang Q, El-Hefnawy M, Abomohra A (2023) Maximizing the energy recovery from rice straw through two-step conversion using eggshell-catalytic pyrolysis followed by enhanced anaerobic digestion using calcium-rich biochar. Sci Total Environ 858:159984. https://doi.org/10.1016/J.SCITOTENV.2022.159984

    Article  CAS  PubMed  Google Scholar 

  • Freedman B, Butterfield RO, Pryde EH (1986) Transesterification kinetics of soybean oil 1. J Am Oil Chem Soc 63:1375–1380

    Article  CAS  Google Scholar 

  • French R, Czernik S (2010) Catalytic pyrolysis of biomass for biofuels production. Fuel Process Technol 91:25–32

    Article  CAS  Google Scholar 

  • Fukuda H, Kondo A, Noda H (2001) Biodiesel fuel production by transesterification of oils. J Biosci Bioeng 92:405. https://doi.org/10.1016/S1389-1723(01)80288-7

    Article  CAS  PubMed  Google Scholar 

  • Gao L, Sun J, Xu W, Xiao G (2017) Catalytic pyrolysis of natural algae over mg-Al layered double oxides/ZSM-5 (MgAl-LDO/ZSM-5) for producing bio-oil with low nitrogen content. Bioresour Technol 225:293–298

    Article  CAS  PubMed  Google Scholar 

  • Gong X, Zhang B, Zhang Y, Huang Y, Xu M (2014) Investigation on pyrolysis of low lipid microalgae Chlorella vulgaris and Dunaliella salina. Energy Fuel 28:95–103

    Article  CAS  Google Scholar 

  • Górak M, Żymańczyk-Duda E (2015) Application of cyanobacteria for chiral phosphonate synthesis. Green Chem 17:4570–4578

    Article  Google Scholar 

  • Gu L, Huang W, Tang S, Tian S, Zhang X (2015) A novel deep eutectic solvent for biodiesel preparation using a homogeneous base catalyst. Chem Eng J 259:647–652

    Article  CAS  Google Scholar 

  • Haider MB, Maheshwari P, Kumar R (2021) CO2 capture from flue gas using phosphonium based deep eutectic solvents: modeling and simulation approach. J Environ Chem Eng 9:106727

    Article  CAS  Google Scholar 

  • Han J, Lee K, Choi MS, Park HS, Kim W, Roh KC (2019) Chlorella-derived activated carbon with hierarchical pore structure for energy storage materials and adsorbents. Carbon Lett 29:167–175

    Article  Google Scholar 

  • Hayyan A, Hashim MA, Hayyan M, Mjalli FS, AlNashef IM (2013) A novel ammonium based eutectic solvent for the treatment of free fatty acid and synthesis of biodiesel fuel. Ind Crop Prod 46:392–398

    Article  CAS  Google Scholar 

  • Hayyan A, Hashim MA, Hayyan M, Mjalli FS, AlNashef IM (2014) A new processing route for cleaner production of biodiesel fuel using a choline chloride based deep eutectic solvent. J Clean Prod 65:246–251

    Article  CAS  Google Scholar 

  • Hechun C, Zhang Z, Wu X, Miao X (2013) Direct biodiesel production from wet microalgae biomass of Chlorella pyrenoidosa through in situ transesterification. Biomed Res Int 2013:930686. https://doi.org/10.1155/2013/930686

    Article  CAS  Google Scholar 

  • Hidalgo P, Navia R, Hunter R, Camus C, Buschmann A, Echeverria A (2023) Carbon nanotube production from algal biochar using microwave irradiation technology. J Anal Appl Pyrolysis 172:106017

    Article  CAS  Google Scholar 

  • Holladay JE, White JF, Bozell JJ, Johnson D (2007) Top value-added chemicals from biomass-volume II—results of screening for potential candidates from biorefinery lignin. Pacific Northwest National Lab.(PNNL), Richland, WA

    Book  Google Scholar 

  • Homan T, Shahbaz K, Farid MM (2017) Improving the production of propyl and butyl ester-based biodiesel by purification using deep eutectic solvents. Sep Purif Technol 174:570–576

    Article  CAS  Google Scholar 

  • Hossain N, Zaini J, Indra Mahlia TM (2019) Life cycle assessment, energy balance and sensitivity analysis of bioethanol production from microalgae in a tropical country. Renew Sust Energ Rev 115:109371. https://doi.org/10.1016/j.rser.2019.109371

    Article  CAS  Google Scholar 

  • Hu Y, Wang H, Lakshmikandan M, Wang S, Wang Q, He Z, Abomohra A (2020) Catalytic co-pyrolysis of seaweeds and cellulose using mixed ZSM-5 and MCM-41 for enhanced crude bio-oil production. J Therm Anal Calorim 143:827. https://doi.org/10.1007/s10973-020-09291-w

    Article  CAS  Google Scholar 

  • Hu Y, Pang K, Cai L, Liu Z (2021) A multi-stage co-gasification system of biomass and municipal solid waste (MSW) for high quality syngas production. Energy 221:119639

    Article  CAS  Google Scholar 

  • Huang W, Tang S, Zhao H, Tian S (2013) Activation of commercial CaO for biodiesel production from rapeseed oil using a novel deep eutectic solvent. Ind Eng Chem Res 52:11943–11947

    Article  CAS  Google Scholar 

  • Ijardar SP, Singh V, Gardas RL (2022) Revisiting the physicochemical properties and applications of deep eutectic solvents. Molecules 27:1368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivanović M, Alañón ME, Arráez-Román D, Segura-Carretero A (2018) Enhanced and green extraction of bioactive compounds from Lippia citriodora by tailor-made natural deep eutectic solvents. Food Res Int 111:67–76

    Article  PubMed  Google Scholar 

  • Jegannathan KR, Abang S, Poncelet D, Chan ES, Ravindra P (2008) Production of biodiesel using immobilized lipase—a critical review. Crit Rev Biotechnol 28:253–264

    Article  CAS  PubMed  Google Scholar 

  • Jegannathan KR, Jun-Yee L, Chan E-S, Ravindra P (2010) Production of biodiesel from palm oil using liquid core lipase encapsulated in κ-carrageenan. Fuel 89:2272–2277

    Article  CAS  Google Scholar 

  • Jiang D, Li H, Cheng X, Ling Q, Chen H, Barati B, Yao Q, Abomohra A, Hu X, Bartocci P, Wang S (2023) A mechanism study of methylene blue adsorption on seaweed biomass derived carbon: from macroscopic to microscopic scale. Process Saf Environ Prot 172:1132–1143. https://doi.org/10.1016/J.PSEP.2023.02.044

    Article  CAS  Google Scholar 

  • Kandasamy S, Zhang B, He Z, Chen H, Feng H, Wang Q, Wang B, Ashokkumar V, Siva S, Bhuvanendran N (2020) Effect of low-temperature catalytic hydrothermal liquefaction of Spirulina platensis. Energy 190:116236

    Article  CAS  Google Scholar 

  • Kazemifard S, Nayebzadeh H, Saghatoleslami N, Safakish E (2019) Application of magnetic alumina-ferric oxide nanocatalyst supported by KOH for in-situ transesterification of microalgae cultivated in wastewater medium. Biomass Bioenergy 129:105338

    Article  CAS  Google Scholar 

  • Ketzer F, Skarka J, Rösch C (2018) Critical review of microalgae LCA studies for bioenergy production. Bioenergy Res 11:95–105

    Article  CAS  Google Scholar 

  • Knothe G, Steidley KR (2005) Kinematic viscosity of biodiesel fuel components and related compounds. Influence of compound structure and comparison to petrodiesel fuel components. Fuel 84:1059–1065. https://doi.org/10.1016/j.fuel.2005.01.016

    Article  CAS  Google Scholar 

  • Köninger K, Gómez Baraibar Á, Mügge C, Paul CE, Hollmann F, Nowaczyk MM, Kourist R (2016) Recombinant cyanobacteria for the asymmetric reduction of C= C bonds fueled by the biocatalytic oxidation of water. Angew Chemie Int Ed 55:5582–5585

    Article  Google Scholar 

  • Kouzu M, Kasuno T, Tajika M, Sugimoto Y, Yamanaka S, Hidaka J (2008) Calcium oxide as a solid base catalyst for transesterification of soybean oil and its application to biodiesel production. Fuel 87:2798–2806

    Article  CAS  Google Scholar 

  • Kumari A, Mahapatra P, Garlapati VK, Banerjee R (2009) Enzymatic transesterification of Jatropha oil. Biotechnol Biofuels 2:1–7

    Article  PubMed  PubMed Central  Google Scholar 

  • Lam MK, Lee KT, Mohamed AR (2010) Homogeneous , heterogeneous and enzymatic catalysis for transesteri fi cation of high free fatty acid oil (waste cooking oil) to biodiesel: a review. Biotechnol Adv 28:500–518. https://doi.org/10.1016/j.biotechadv.2010.03.002

    Article  CAS  PubMed  Google Scholar 

  • Lam MK, Loy ACM, Yusup S, Lee KT (2019) Biohydrogen production from algae. In: Biohydrogen. Elsevier, Amsterdam, pp 219–245

    Chapter  Google Scholar 

  • Lee HW, Jeon J-K, Park SH, Jeong K-E, Chae H-J, Park Y-K (2011) Catalytic pyrolysis of Laminaria japonica over nanoporous catalysts using Py-GC/MS. Nanoscale Res Lett 6:500

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee D, Nam H, Seo MW, Lee SH, Tokmurzin D, Wang S, Park Y-K (2022) Recent progress in the catalytic thermochemical conversion process of biomass for biofuels. Chem Eng J 447:137501

    Article  CAS  Google Scholar 

  • Li P, Chen X, Wang X, Shao J, Lin G, Yang H, Yang Q, Chen H (2017) Catalytic upgrading of fast pyrolysis products with Fe-, Zr-, and co-modified zeolites based on pyrolyzer–GC/MS analysis. Energy Fuel 31:3979–3986

    Article  CAS  Google Scholar 

  • Li R, Liu D, Zhang Y, Zhou J, Tsang YF, Liu Z, Duan N, Zhang Y (2019a) Improved methane production and energy recovery of post-hydrothermal liquefaction waste water via integration of zeolite adsorption and anaerobic digestion. Sci Total Environ 651:61–69

    Article  CAS  PubMed  Google Scholar 

  • Li F, Srivatsa SC, Bhattacharya S (2019b) A review on catalytic pyrolysis of microalgae to high-quality bio-oil with low oxygeneous and nitrogenous compounds. Renew Sust Energ Rev 108:481–497

    Article  CAS  Google Scholar 

  • Li L, Huang J, Almutairi AW, Lan X, Zheng L, Lin Y, Chen L, Fu N, Lin Z, Abomohra A (2021) Integrated approach for enhanced bio-oil recovery from disposed face masks through co-hydrothermal liquefaction with Spirulina platensis grown in wastewater. Biomass Convers Biorefin 2021(1):1–12. https://doi.org/10.1007/S13399-021-01891-2

    Article  Google Scholar 

  • Lin H, Shen H, Lee YK (2018) Cellular and molecular responses of Dunaliella tertiolecta by expression of a plant medium chain length fatty acid specific acyl-ACP thioesterase. Front Microbiol 9:619

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu J, Li X, Guo QJ (2014) Study of catalytic pyrolysis of chlorella with γ-Al2O3 catalyst. Adv Mat Res Trans Tech Publ 1004-1005:562–566

    Google Scholar 

  • Lu W, Alam MA, Pan Y, Wu J, Wang Z, Yuan Z (2016) A new approach of microalgal biomass pretreatment using deep eutectic solvents for enhanced lipid recovery for biodiesel production. Bioresour Technol 218:123–128

    Article  CAS  PubMed  Google Scholar 

  • Madhuvilakku R, Piraman S (2013) Biodiesel synthesis by TiO2–ZnO mixed oxide nanocatalyst catalyzed palm oil transesterification process. Bioresour Technol 150:55–59

    Article  CAS  PubMed  Google Scholar 

  • Maheshwari P, Haider MB, Kumar R (2021) Effect of water addition on CO2 solubility of glycol-based deep eutectic solvents. In: Proceedings of the 15th Greenhouse Gas Control Technologies Conference, pp 15–18

    Google Scholar 

  • Malilas W, Kang SW, Kim SB, Yoo HY, Chulalaksananukul W, Kim SW (2013) Lipase from Penicillium camembertii KCCM 11268: optimization of solid state fermentation and application to biodiesel production. Korean J Chem Eng 30:405–412

    Article  CAS  Google Scholar 

  • Marchetti JM, Miguel VU, Errazu AF (2007) Possible methods for biodiesel production. Renew Sust Energ Rev 11:1300–1311

    Article  CAS  Google Scholar 

  • Mathew GM, Raina D, Narisetty V, Kumar V, Saran S, Pugazhendi A, Sindhu R, Pandey A, Binod P (2021) Recent advances in biodiesel production: challenges and solutions. Sci Total Environ 794:148751

    Article  CAS  PubMed  Google Scholar 

  • Mathimani T, Baldinelli A, Rajendran K, Prabakar D, Matheswaran M, van Leeuwen RP, Pugazhendhi A (2019) Review on cultivation and thermochemical conversion of microalgae to fuels and chemicals: process evaluation and knowledge gaps. J Clean Prod 208:1053–1064

    Article  CAS  Google Scholar 

  • Meher LC, Kulkarni MG, Dalai AK, Naik SN (2006) Transesterification of karanja (Pongamia pinnata) oil by solid basic catalysts. Eur J Lipid Sci Technol 108:389–397

    Article  CAS  Google Scholar 

  • Michalak I, Baśladyńska S, Mokrzycki J, Rutkowski P (2019) Biochar from a freshwater macroalga as a potential biosorbent for wastewater treatment. Water 11:1390

    Article  CAS  Google Scholar 

  • Milano J, Ong HC, Masjuki HH, Chong WT, Lam MK, Loh PK, Vellayan V (2016) Microalgae biofuels as an alternative to fossil fuel for power generation. Renew Sust Energ Rev 58:180–197

    Article  Google Scholar 

  • Mohebbi S, Rostamizadeh M, Kahforoushan D (2020) Effect of molybdenum promoter on performance of high silica MoO3/B-ZSM-5 nanocatalyst in biodiesel production. Fuel 266:117063

    Article  CAS  Google Scholar 

  • Nagaraju G, Prashanth SA, Shastri M, Yathish KV, Anupama C, Rangappa D (2017) Electrochemical heavy metal detection, photocatalytic, photoluminescence, biodiesel production and antibacterial activities of Ag–ZnO nanomaterial. Mater Res Bull 94:54–63

    Article  CAS  Google Scholar 

  • Nakatani N, Takamori H, Takeda K, Sakugawa H (2009) Transesterification of soybean oil using combusted oyster shell waste as a catalyst. Bioresour Technol 100:1510–1513

    Article  CAS  PubMed  Google Scholar 

  • Navvabi A, Razzaghi M, Fernandes P, Karami L, Homaei A (2018) Novel lipases discovery specifically from marine organisms for industrial production and practical applications. Process Biochem 70:61–70

    Article  CAS  Google Scholar 

  • Ngatcha ADP, Zhao A, Zhang S, Xiong W, Sarker M, Xu J, Alam MA (2023) Determination of active sites on the synthesis of novel Lewis acidic deep eutectic solvent catalysts and kinetic studies in microalgal biodiesel production. RSC Adv 13:10110–10122

    Article  Google Scholar 

  • Oliveira F, Moreira C, Salgado JM, Abrunhosa L, Venâncio A, Belo I (2016) Olive pomace valorization by Aspergillus species: lipase production using solid-state fermentation. J Sci Food Agric 96:3583–3589

    Article  CAS  PubMed  Google Scholar 

  • Ong HC, Chen WH, Farooq A, Gan YY, Lee KT, Ashokkumar V (2019) Catalytic thermochemical conversion of biomass for biofuel production: a comprehensive review. Renew Sustain Energy Rev. https://doi.org/10.1016/j.rser.2019.109266

  • Pandit PR, Fulekar MH (2017) Egg shell waste as heterogeneous nanocatalyst for biodiesel production: optimized by response surface methodology. J Environ Manag 198:319–329

    Article  CAS  Google Scholar 

  • Pandit PR, Fulekar MH (2019) Biodiesel production from Scenedesmus armatus using egg shell waste as nanocatalyst. Mater Today Proc 10:75–86

    Article  CAS  Google Scholar 

  • Pang K, Hou Y, Wu W, Guo W, Peng W, Marsh KN (2012) Efficient separation of phenols from oils via forming deep eutectic solvents. Green Chem 14:2398–2401

    Article  CAS  Google Scholar 

  • Panić M, Gunjević V, Cravotto G, Redovniković IR (2019) Enabling technologies for the extraction of grape-pomace anthocyanins using natural deep eutectic solvents in up-to-half-litre batches extraction of grape-pomace anthocyanins using NADES. Food Chem 300:125185

    Article  PubMed  Google Scholar 

  • Pedro SN, Freire MG, Freire CSR, Silvestre AJD (2019) Deep eutectic solvents comprising active pharmaceutical ingredients in the development of drug delivery systems. Expert Opin Drug Deliv 16:497–506

    Article  PubMed  Google Scholar 

  • Rafati A, Tahvildari K, Nozari M (2019) Production of biodiesel by electrolysis method from waste cooking oil using heterogeneous MgO-NaOH nano catalyst. Energy Sources, Part A Recover Util Environ Eff 41:1062–1074

    CAS  Google Scholar 

  • Raj J, Bharathiraja B, Vijayakumar B, Arokiyaraj S, Iyyappan J, Praveen Kumar R (2019) Biodiesel production from microalgae Nannochloropsis oculata using heterogeneous poly ethylene glycol (PEG) encapsulated ZnOMn 2+ nanocatalyst. Bioresour Technol 282:348–352

    Article  Google Scholar 

  • Raman M, Doble M (2015) κ-Carrageenan from marine red algae, Kappaphycus alvarezii–a functional food to prevent colon carcinogenesis. J Funct Foods 15:354–364

    Article  CAS  Google Scholar 

  • Ravichandran SR, Venkatachalam CD, Sengottian M, Sekar S, Kandasamy S, Subramanian KPR, Purushothaman K, Chandrasekaran AL, Narayanan M (2022) A review on hydrothermal liquefaction of algal biomass on process parameters, purification and applications. Fuel 313:122679

    Article  CAS  Google Scholar 

  • Reddy HK, Muppaneni T, Ponnusamy S, Sudasinghe N, Pegallapati A, Selvaratnam T, Seger M, Dungan B, Nirmalakhandan N, Schaub T (2016) Temperature effect on hydrothermal liquefaction of Nannochloropsis gaditana and Chlorella sp. Appl Energy 165:943–951

    Article  CAS  Google Scholar 

  • Reddy SN, Nanda S, Sarangi PK (2018) Applications of supercritical fluids for biodiesel production. In: Recent advancements in biofuels and bioenergy utilization. Springer Nature, Singapore, pp 261–284

    Chapter  Google Scholar 

  • Ren Q, Zhao C, Wu X, Liang C, Chen X, Shen J, Tang G, Wang Z (2009) Effect of mineral matter on the formation of NOx precursors during biomass pyrolysis. J Anal Appl Pyrolysis 85:447–453

    Article  CAS  Google Scholar 

  • Roberts DA, Paul NA, Dworjanyn SA, Bird MI, de Nys R (2015) Biochar from commercially cultivated seaweed for soil amelioration. Sci Rep 5:9665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salimi Z, Hosseini SA (2019) Study and optimization of conditions of biodiesel production from edible oils using ZnO/BiFeO3 nano magnetic catalyst. Fuel 239:1204–1212

    Article  CAS  Google Scholar 

  • Sangon S, Ratanavaraha S, Ngamprasertsith S, Prasassarakich P (2006) Coal liquefaction using supercritical toluene–tetralin mixture in a semi-continuous reactor. Fuel Process Technol 87:201–207

    Article  CAS  Google Scholar 

  • Shakya R, Whelen J, Adhikari S, Mahadevan R, Neupane S (2015) Effect of temperature and Na2CO3 catalyst on hydrothermal liquefaction of algae. Algal Res 12:80–90

    Article  Google Scholar 

  • Shakya R, Adhikari S, Mahadevan R, Shanmugam SR, Nam H, Dempster TA (2017) Influence of biochemical composition during hydrothermal liquefaction of algae on product yields and fuel properties. Bioresour Technol 243:1112–1120

    Article  CAS  PubMed  Google Scholar 

  • Sharma N, Jaiswal KK, Kumar V, Vlaskin MS, Nanda M, Rautela I, Tomar MS, Ahmad W (2021) Effect of catalyst and temperature on the quality and productivity of HTL bio-oil from microalgae: a review. Renew Energy 174:810–822. https://doi.org/10.1016/J.RENENE.2021.04.147

    Article  CAS  Google Scholar 

  • Sharma R, Jisha KJ, Gardas RL, Malek N, Ijardar SP (2022) Insights into experimental and theoretical approach to physicochemical properties of aqueous PEGylated deep eutectic solvents at T=(293.15–323.15) K. J Mol Liq 366:120278

    Article  CAS  Google Scholar 

  • Shimoda K, Kubota N, Hamada H, Kaji M, Hirata T (2004) Asymmetric reduction of enones with Synechococcus sp. PCC 7942. Tetrahedron Asymmetry 15:1677–1679

    Article  CAS  Google Scholar 

  • Sim JH, Kamaruddin AH, Bhatia S (2010) Biodiesel (FAME) productivity, catalytic efficiency and thermal stability of lipozyme TL IM for crude palm oil transesterification with methanol. J Am Oil Chem Soc 87:1027–1034

    Article  CAS  Google Scholar 

  • Škulcová A, Kamenská L, Kalman F, Ház A, Jablonský M, Čížová K, Šurina I (2016) Deep eutectic solvents as medium for pretreatment of biomass. Key Engineering Materials 688:17–24. Trans Tech Publ

    Article  Google Scholar 

  • Śliżewska A, Żymańczyk-Duda E (2021) Cyanobacteria as valuable tool in biotechnology. Catalysts 11:1259

    Article  Google Scholar 

  • Smith EL, Abbott AP, Ryder KS (2014) Deep eutectic solvents (DESs) and their applications. Chem Rev 114(21):11060–11082. https://doi.org/10.1021/cr300162p

    Article  CAS  PubMed  Google Scholar 

  • Soltanmohammadi F, Jouyban A, Shayanfar A (2021) New aspects of deep eutectic solvents: extraction, pharmaceutical applications, as catalyst and gas capture. Chem Pap 75:439–453

    Article  CAS  Google Scholar 

  • Suganya T, Varman M, Masjuki HH, Renganathan S (2016) Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: a biorefinery approach. Renew Sust Energ Rev 55:909–941. https://doi.org/10.1016/j.rser.2015.11.026

    Article  CAS  Google Scholar 

  • Suwannakarn K, Lotero E, Ngaosuwan K, Goodwin JG (2009) Simultaneous free fatty acid esterification and triglyceride transesterification using a solid acid catalyst with in situ removal of water and unreacted methanol. Ind Eng Chem Res 48:2810–2818

    Article  CAS  Google Scholar 

  • Swetha A, ShriVigneshwar S, Gopinath KP, Sivaramakrishnan R, Shanmuganathan R, Arun J (2021) Review on hydrothermal liquefaction aqueous phase as a valuable resource for biofuels, bio-hydrogen and valuable bio-chemicals recovery. Chemosphere 283:131248

    Article  CAS  PubMed  Google Scholar 

  • Talha NS, Sulaiman S (2016) Overview of catalysts in biodiesel production. ARPN J Eng Appl Sci 11:439–442

    CAS  Google Scholar 

  • Tao L, Yuefeng D, Shucai GAN, Ji C (2010) Application of choline chloride· xZnCl2 ionic liquids for preparation of biodiesel. Chinese J Chem Eng 18:322–327

    Article  Google Scholar 

  • Thangalazhy-Gopakumar S, Adhikari S, Chattanathan SA, Gupta RB (2012) Catalytic pyrolysis of green algae for hydrocarbon production using H+ ZSM-5 catalyst. Bioresour Technol 118:150–157

    Article  CAS  PubMed  Google Scholar 

  • Thangaraj B, Ramachandran KB, Raj SP (2014) Homogeneous catalytic transesterification of renewable Azadirachta indica (neem) oil and its derivatives to biodiesel fuel via acid/alkaline esterification processes. Int J Renew Energy Biofuels 11:1–16

    Google Scholar 

  • Tišma M, Tadić T, Budžaki S, Ostojčić M, Šalić A, Zelić B, Tran NN, Ngothai Y, Hessel V (2019) Lipase production by solid-state cultivation of Thermomyces lanuginosus on by-products from cold-pressing oil production. PRO 7:465

    Google Scholar 

  • Tran NH, Bartlett JR, Kannangara GSK, Milev AS, Volk H, Wilson MA (2010) Catalytic upgrading of biorefinery oil from micro-algae. Fuel 89:265–274

    Article  CAS  Google Scholar 

  • Trevan MD (1988) Enzyme immobilization by covalent bonding. New Protein Tech 3:495–510

    Article  CAS  Google Scholar 

  • Tripathi M, Sahu JN, Ganesan P (2016) Effect of process parameters on production of biochar from biomass waste through pyrolysis: a review. Renew Sust Energ Rev 55:467–481

    Article  CAS  Google Scholar 

  • Valdez PJ, Nelson MC, Wang HY, Lin XN, Savage PE (2012) Hydrothermal liquefaction of Nannochloropsis sp.: systematic study of process variables and analysis of the product fractions. Biomass Bioenergy 46:317–331

    Article  CAS  Google Scholar 

  • Vardon DR, Sharma BK, Blazina GV, Rajagopalan K, Strathmann TJ (2012) Thermochemical conversion of raw and defatted algal biomass via hydrothermal liquefaction and slow pyrolysis. Bioresour Technol 109:178–187

    Article  CAS  PubMed  Google Scholar 

  • Vaseghi Z, Najafpour GD, Mohseni S, Mahjoub S (2013) Production of active lipase by R hizopus oryzae from sugarcane bagasse: solid state fermentation in a tray bioreactor. Int J Food Sci Technol 48:283–289

    Article  CAS  Google Scholar 

  • Vatankhah E, Hamedi S, Ramezani O (2020) Surfactant-assisted incorporation of rosmarinic acid into electrosprayed poly (lactic-co-glycolic acid) microparticles with potential for cosmetic and pharmaceutical applications. Polym Test 81:106180

    Article  CAS  Google Scholar 

  • Verma S, Das LM, Kaushik SC (2017) Effects of varying composition of biogas on performance and emission characteristics of compression ignition engine using exergy analysis. Energy Convers Manag 138:346–359

    Article  CAS  Google Scholar 

  • Wang K, Brown RC (2013) Catalytic pyrolysis of microalgae for production of aromatics and ammonia. Green Chem 15:675–681

    Article  CAS  Google Scholar 

  • Wang Z, Chen G, Ding K (2009) Self-supported catalysts. Chem Rev 109:322–359

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Zhang S, Yu Q, Lin Y, Yang N, Han W, Zhang J (2017) Hydrothermal liquefaction of high protein microalgae via clay material catalysts. RSC Adv 7:50794–50801

    Article  CAS  Google Scholar 

  • Wang W, Xu Y, Wang X, Zhang B, Tian W, Zhang J (2018) Hydrothermal liquefaction of microalgae over transition metal supported TiO2 catalyst. Bioresour Technol 250:474–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Zhao S, Uzoejinwa BB, Zheng A, Wang Q, Huang J, Abomohra A (2020) A state-of-the-art review on dual purpose seaweeds utilization for wastewater treatment and crude bio-oil production. Energy Convers Manag 222:113253

    Article  CAS  Google Scholar 

  • Wang J, Li M, Duan L, Lin Y, Cui X, Yang Y, Wang C (2022a) Deep eutectic systems as novel vehicles for assisting drug transdermal delivery. Pharmaceutics 14:2265

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang S, Mukhambet Y, Esakkimuthu S (2022b) Integrated microalgal biorefinery–routes, energy, economic and environmental perspectives. J Clean Prod 131245:131245

    Article  Google Scholar 

  • Watson J, Wang T, Si B, Chen W-T, Aierzhati A, Zhang Y (2020) Valorization of hydrothermal liquefaction aqueous phase: pathways towards commercial viability. Prog Energy Combust Sci 77:100819

    Article  Google Scholar 

  • Wen L, Wang Y, Lu D, Hu S, Han H (2010) Preparation of KF/CaO nanocatalyst and its application in biodiesel production from Chinese tallow seed oil. Fuel 89:2267–2271

    Article  CAS  Google Scholar 

  • Widayat W, Darmawan T, Hadiyanto H, Rosyid RA (2017) Preparation of heterogeneous CaO catalysts for biodiesel production. In: Journal of physics: conference series, vol 877. IOP Publishing, Bristol, p 12018

    Google Scholar 

  • Xinglong D, Zhaoan C, Song X, JInling Z, Jiannan Z, Yapeng L, Yunpeng X, Zhongmin L (2013) Catalytic pyrolysis of microalga Chlorella pyrennoidosa for production of ethylene, propylene and butene

    Google Scholar 

  • Xu Y, Nordblad M, Nielsen PM, Brask J, Woodley JM (2011) In situ visualization and effect of glycerol in lipase-catalyzed ethanolysis of rapeseed oil. J Mol Catal B Enzym 72:213–219

    Article  CAS  Google Scholar 

  • Xu Y-P, Duan P-G, Wang F, Guan Q-Q (2018a) Liquid fuel generation from algal biomass via a two-step process: effect of feedstocks. Biotechnol Biofuels 11:1–16

    Article  Google Scholar 

  • Xu D, Guo S, Liu L, Hua H, Guo Y, Wang S, Jing Z (2018b) Ni-Ru/CeO2 catalytic hydrothermal upgrading of water-insoluble biocrude from algae hydrothermal liquefaction. Biomed Res Int 2018:1–9

    Google Scholar 

  • Yan D, Xia P, Song X, Lin T, Cao H (2019) Community structure and functional diversity of epiphytic bacteria and planktonic bacteria on submerged macrophytes in Caohai Lake, southwest of China. Ann Microbiol 69:933–944

    Article  CAS  Google Scholar 

  • Yang C, Li R, Cui C, Liu S, Qiu Q, Ding Y, Wu Y, Zhang B (2016) Catalytic hydroprocessing of microalgae-derived biofuels: a review. Green Chem 18:3684–3699

    Article  CAS  Google Scholar 

  • Yoo G, Park MS, Yang J-W, Choi M (2015) Lipid content in microalgae determines the quality of biocrude and energy return on investment of hydrothermal liquefaction. Appl Energy 156:354–361

    Article  CAS  Google Scholar 

  • Yu JT, Dehkhoda AM, Ellis N (2011) Development of biochar-based catalyst for transesterification of canola oil. Energy Fuel 25:337–344

    Article  CAS  Google Scholar 

  • Yu KL, Lau BF, Show PL, Ong HC, Ling TC, Chen W-H, Ng EP, Chang J-S (2017) Recent developments on algal biochar production and characterization. Bioresour Technol 246:2–11

    Article  CAS  PubMed  Google Scholar 

  • Zabeti M, Daud WMAW, Aroua MK (2009) Activity of solid catalysts for biodiesel production: a review. Fuel Process Technol 90:770–777

    Article  CAS  Google Scholar 

  • Zainan NH, Srivatsa SC, Bhattacharya S (2015) Catalytic pyrolysis of microalgae Tetraselmis suecica and characterization study using in situ synchrotron-based infrared microscopy. Fuel 161:345–354

    Article  CAS  Google Scholar 

  • Zhang B, Wu J, Deng Z, Yang C, Cui C, Ding Y (2017) A comparison of energy consumption in hydrothermal liquefaction and pyrolysis of microalgae. Trends Renew Energy 3:76–85

    Article  Google Scholar 

  • Zhao Y, Wang P, Zheng W, Yu G, Li Z, She Y, Lee M (2019) Three-stage microwave extraction of cumin (Cuminum cyminum L.) seed essential oil with natural deep eutectic solvents. Ind Crop Prod 140:111660

    Article  CAS  Google Scholar 

  • Zhou D, Zhang L, Zhang S, Fu H, Chen J (2010) Hydrothermal liquefaction of macroalgae Enteromorpha prolifera to bio-oil. Energy Fuel 24:4054–4061

    Article  CAS  Google Scholar 

  • Zoppi G, Pipitone G, Galletti C, Rizzo AM, Chiaramonti D, Pirone R, Bensaid S (2021) Aqueous phase reforming of lignin-rich hydrothermal liquefaction by-products: a study on catalyst deactivation. Catal Today 365:206–213

    Article  CAS  Google Scholar 

  • Żymańczyk-Duda E, Głąb A, Gorak M, Klimek-Ochab M, Brzezińska-Rodak M, Strub D, Śliżewska A (2019) Reductive capabilities of different cyanobacterial strains towards acetophenone as a model substrate–Prospect of applications for chiral building blocks synthesis. Bioorg Chem 93:102810

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuang Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Esakkimuthu, S., Wang, S., Abomohra, A. (2024). Catalyst in Action. In: Abomohra, A., Ende, S. (eds) Value-added Products from Algae. Springer, Cham. https://doi.org/10.1007/978-3-031-42026-9_11

Download citation

Publish with us

Policies and ethics