Skip to main content

Measurement of Sedentary Behaviour in Population Studies

  • Chapter
  • First Online:
Sedentary Behaviour Epidemiology

Abstract

Measurement of sedentary behaviours in surveillance systems and in population studies involves the use of subjective and objective methods. Subjective methods have traditionally included questionnaires to provide a snapshot of sedentary behaviours and to quantify the time spent in sedentary behaviours as categorised by energy expenditure and posture. New horizons for subjective methodologies include smartphone applications that allow measurement of the facets and subcategories of the Consensus Taxonomy of Sedentary Behaviours. Objective methods have used pedometers to determine the proportion of the populations with <5000 steps/day as defined by the step-defined Sedentary Behaviour Index and accelerometers to determine the time spent in sedentary behaviours defined as <100 acceleration counts per minute. New horizons for objective methodologies include integrated motion and posture sensors to assess time spent in metabolic intensities ≤1.5 metabolic equivalents (METs) and sitting or reclining postures. Innovative ways to score accelerometer outputs to allow pattern recognition of types of sedentary behaviours also are on the horizon. Selection of a sedentary measurement method should include considerations of the validity, reliability and responsiveness of a method to reduce measurement error. Methods also should be selected that allow evaluation of Hill’s Criteria for Causality to advance the understanding of the effects of sedentary behaviours on health outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bakker EA, Hartman YAW, Hopman MTE, Hopkins ND, Graves LEF, Dunstan DW, et al. Validity and reliability of subjective methods to assess sedentary behaviour in adults: a systematic review and meta-analysis. Int J Behav Nutr Phys Act. 2020;17(1):75.

    Article  Google Scholar 

  2. Prince SA, LeBlanc AG, Colley RC, Saunders TJ. Measurement of sedentary behaviour in population health surveys: a review and recommendations. PeerJ. 2017;5:e4130.

    Article  Google Scholar 

  3. Phillips SM, Summerbell C, Hobbs M, Hesketh KR, Saxena S, Muir C, et al. A systematic review of the validity, reliability, and feasibility of measurement tools used to assess the physical activity and sedentary behaviour of pre-school aged children. Int J Behav Nutr Phys Act. 2021;18(1):141.

    Article  Google Scholar 

  4. Heesch KC, Hill RL, Aguilar-Farias N, van Uffelen JGZ, Pavey T. Validity of objective methods for measuring sedentary behaviour in older adults: a systematic review. Int J Behav Nutr Phys Act. 2018;15(1):119.

    Article  Google Scholar 

  5. Boerema ST, van Velsen L, Vollenbroek MM, Hermens HJ. Pattern measures of sedentary behaviour in adults: a literature review. Digit Health. 2020;6:2055207620905418.

    Google Scholar 

  6. Lucas RM, McMichael AJ. Association or causation: evaluating links between “environment and disease”. Bull World Health Organ. 2005;83(10):792–5.

    Google Scholar 

  7. Terwee CB, Mokkink LB, van Poppel MNM, Chinapaw MJM, van Mechelen W, de Vet HCW. Qualitative attributes and measurement properties of physical activity questionnaires: a checklist. Sports Med. 2010;40(7):525–37.

    Article  Google Scholar 

  8. Ainsworth BE, Haskell WL, Herrmann SD, Meckes N, Bassett DR Jr, Tudor-Locke C, Greer JL, Vezina J, Whitt-Glover MC, Leon AS. Compendium of physical activities: a second update of codes and MET values. Med Sci Sports Exerc. 2011;43(8):1575–81.

    Article  Google Scholar 

  9. Hu FB, Li TY, Colditz GA, Willett WC, Manson JE. Television watching and other sedentary behaviors in relation to risk of obesity and type 2 diabetes mellitus in women. JAMA. 2003;289(14):1785–91.

    Article  Google Scholar 

  10. Chastin SFM, Schwarz U. Skelton development of a consensus taxonomy of sedentary behaviors (SIT): report of Delphi round 1. PLoS One. 2013;8(12):e82313.

    Article  Google Scholar 

  11. European Commission. Special Eurobarometer 412 sport and physical activity. Sleep Breath. 2014;18(1):133–6.

    Google Scholar 

  12. European Commission. Eurobarometer on sport and physical activity Brussels: Communication Department of the European Commission; 2014 [updated March 24, 2014. Memo/14/207]. http://europa.eu/rapid/press-release_MEMO-14-207_en.htm

  13. Ford E, Schulze MB, Kroger J, Pischon T, Bergmann MM, Boeing H. Television watching and incident diabetes: findings from the European Prospective Investigation into Cancer and Nutrition–Potsdam Study. J Diabetes. 2010;2:23–7.

    Article  Google Scholar 

  14. Deforche B, Van Dyck D, Deliens T, De Bourdeaudhuij I. Changes in weight, physical activity, sedentary behaviour and dietary intake during the transition to higher education: a prospective study. Int J Behav Nutr Phys Act. 2015;12:16.

    Article  Google Scholar 

  15. Busschaert C, De Bourdeaudhuij I, Van Cauwenberg J, Cardon G, De Cocker K. Intrapersonal, social-cognitive and physical environmental variables related to context-specific sitting time in adults: a one-year follow-up study. Int J Behav Nutr Phys Act. 2016;13(1):28.

    Article  Google Scholar 

  16. Craig CL, Marshall AL, Sjöström M, Bauman AE, Booth ML, Ainsworth BE, Pratt M, Ekelund U, Yngve A, Sallis JF, Oja P. International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc. 2003;35(8):1381–95.

    Article  Google Scholar 

  17. Rosenberg DE, Bull FC, Marshall AL, Sallis JF, Bauman AE. Assessment of sedentary behavior with the international physical activity questionnaire. J Phys Activ Health. 2008;5(1):S30–44.

    Article  Google Scholar 

  18. Clark BK, Thorp AA, Winkler EA, Gardiner PA, Healy GN, Owen N, Dunstan DW. Validity of self-reported measures of workplace sitting time and breaks in sitting time. Med Sci Sports Exerc. 2011;43(10):1907–0912.

    Article  Google Scholar 

  19. Gardiner PA, Healy GN, Eakin EG, Clark BK, Dunstan DW, Shaw JE, Zimmet PZ, Owen N. Associations between television viewing time and overall sitting time with the metabolic syndrome in older men and women: the Australian Diabetes, Obesity and Lifestyle study. J Am Geriatr Soc. 2011;59(5):788–96.

    Article  Google Scholar 

  20. Clark BK, Winkler E, Healy GN, Gardiner PG, Dunstan DW, Owen N, Reeves MM. Adults’ past-day recall of sedentary time: reliability, validity, and responsiveness. Med Sci Sports Exerc. 2013;45(6):1198–207.

    Article  Google Scholar 

  21. Rosenberg DE, Norman GJ, Wagner N, Patrick K, Calfas KJ, Sallis JF. Reliability and validity of the sedentary behavior questionnaire (SBQ) for adults. J Phys Activ Health. 2010;7:697–705.

    Article  Google Scholar 

  22. Neilson HK, Ullman R, Robson PJ, Friedenreich CM, Csizmadi I. Cognitive testing of the STAR-Q: insights in activity and sedentary time reporting. J Phys Activ Health. 2013;10(3):379–89.

    Article  Google Scholar 

  23. Whitfield GP, Pettee Gabriel KK, Kohl HW. Assessing sitting across contexts: development of the multi-context sitting time questionnaire. Res Q Exercise Sport. 2013;84(3):323–8.

    Article  Google Scholar 

  24. Golubic R, May AM, Benjaminsen Borch K, Overvad K, Charles MA, Diaz MJ, et al. Validity of electronically administered recent physical activity questionnaire (RPAQ) in ten European countries. PLoS One. 2014;9(3):e92829.

    Article  Google Scholar 

  25. Besson H, Brage S, Jakes RW, Ekelund U, Wareham NJ. Estimating physical activity energy expenditure, sedentary time, and physical activity intensity by self-report in adults. Am J Clin Nutr. 2010;91(1):106–14.

    Article  Google Scholar 

  26. Wijndaele K, Bourdeaudhuij I, Godino JG, Lynch BM, Griffin SJ, Westgate K, Brage S. Reliability and validity of a domain-specific last 7-d sedentary time questionnaire. Med Sci Sports Exerc. 2014;46(6):1248–60.

    Article  Google Scholar 

  27. Van Cauwenberg J, Van Holle V, De Bourdeaudhuij I, Owen N, Deforche B. Older adults’ reporting of specific sedentary behaviors: validity and reliability. BMC Public Health. 2014;14(1):734.

    Article  Google Scholar 

  28. Scholes S, Bridges S, Ng Fat L, Mindell JS. Comparison of the physical activity and sedentary behaviour assessment questionnaire and the short-form international physical activity questionnaire: an analysis of health survey for England data. PLoS One. 2016;11(3):e0151647.

    Article  Google Scholar 

  29. Atkin AJ, Gorely T, Clemes SA, Yates T, Edwardson C, Brage S, Salmon J, Marshall SJ, Biddle SJ. Methods of measurement in epidemiology: sedentary behaviour. Int J Epidemiol. 2012;41(5):1560–471.

    Article  Google Scholar 

  30. Chang E-T, Yang M-C, Wang H-M, Lai H-L. Snoring in a sitting position and neck circumference are predictors of sleep apnea in Chinese patients. Sleep Breath. 2014;18(1):133–1316.

    Article  Google Scholar 

  31. Ainsworth BE, Caspersen CJ, Matthews CE, Masse LC, Baranowski T, Zhu W. Recommendation to improve the accuracy of estimates of physical activity derived from self report. J Phys Activ Health. 2012;9(1):S76–84.

    Article  Google Scholar 

  32. Ainsworth BE, Flórez Pregonero A, Rivière F. Assessing sedentary behavior using questionnaires. In: Zhu W, Owen N, editors. Sedentary behavior and health: concepts, evidence, assessment and intervention. Champaign, IL: Human Kinetics; 2017.

    Google Scholar 

  33. Ainsworth BE HW, Herrmann SD, Meckes N, Bassett Jr DR, Tudor-Locke C, Greer JL, Vezina J, Whitt-Glover MC, Leon AS. The compendium of physical activities tracking guide School of Nutrition and Health Promotion. Arizona State University, 2011. https://sites.google.com/site/compendiumofphysicalactivities/

  34. Chen KY, Bassett DR Jr. The technology of accelerometry-based activity monitors: current and future. Med Sci Sports Exerc. 2015;37(11):S490–500.

    Article  Google Scholar 

  35. Troiano RP, Berrigan D, Dodd KW, Masse LC, Tilert T, McDowell M. Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc. 2008;40(1):181–8.

    Article  Google Scholar 

  36. Katzmarzyk PT, Barreira TV, Broyles ST, Champagne CM, Chaput JP, Fogelholm M, et al. The international study of childhood obesity, lifestyle and the environment (ISCOLE): design and methods. BMC Public Health. 2013;13:900.

    Article  Google Scholar 

  37. Hagströmer M, Kwak L, Oja P, Sjöström M. A 6 year longitudinal study of accelerometer-measured physical activity and sedentary time in Swedish adults. J Sci Med Sport. 2015;18(5):553–7.

    Article  Google Scholar 

  38. Lee I-M, Shiroma EJ. Using accelerometers to measure physical activity in large-scale epidemiological studies: issues and challenges. Br J Sport Med. 2014;48(3):197–201.

    Article  Google Scholar 

  39. Shiroma EJ, Cook NR, Manson JE, Buring JE, Rimm EB, Lee IM. Comparison of self-reported and accelerometer-assessed physical activity in older women. PLoS One. 2015;10(12):e0145950.

    Article  Google Scholar 

  40. Zhu W, Howard VJ, Wadley VG, Hutto B, Blair SN, Vena JE, Colabianchi N, Rhodes D, Hooker SP. Association between objectively measured physical activity and cognitive function in older adults-the reasons for geographic and racial differences in stroke study. J Am Geriatr Soc. 2015;63(12):2447–54.

    Article  Google Scholar 

  41. Griffiths LJ, Sera F, Cortina-Borja M, Law C, Ness A, Dezateux C. Objectively measured physical activity and sedentary time: cross-sectional and prospective associations with adiposity in the Millennium Cohort Study. BMJ Open. 2016;6(4):e010366.

    Article  Google Scholar 

  42. Gao L, Bourke AK, Nelson J. Evaluation of accelerometer based multi-sensor versus single-sensor activity recognition systems. Med Eng Phys. 2014;36(6):779–85.

    Article  Google Scholar 

  43. Bassett DR, John D, Conger SA, Rider BC, Passmore RM, Clark JM. Detection of lying down, sitting, standing, and stepping using two activPAL monitor. Med Sci Sports Exerc. 2014;46(10):2025–9.

    Article  Google Scholar 

  44. Leask CF, Harvey JA, Skelton DA, Chastin SF. Exploring the context of sedentary behaviour in older adults (what, where, why, when and with whom). Eur Rev Aging Phys Act. 2015;12(1):1–8.

    Article  Google Scholar 

  45. Matthews CE, Hagströmer M, Pober DM, Bowles HR. Best practices for using physical activity monitors in population-based research. Med Sci Sports Exerc. 2012;44(1):S68–76.

    Article  Google Scholar 

  46. Craig CL, Cameron C, Griffiths JM, Tudor-Locke C. Descriptive epidemiology of youth pedometer-determined physical activity: CANPLAY. Med Sci Sports Exerc. 2010;42(9):1639–43.

    Article  Google Scholar 

  47. Craig CL, Cameron C, Tudor-Locke C. CANPLAY pedometer normative reference data for 21,271 children and 12,956 adolescents. Med Sci Sports Exerc. 2013;45(1):123–9.

    Article  Google Scholar 

  48. Cameron C, Craig CL, Bauman A, Tudor-Locke C. CANPLAY study: secular trends in steps/day amongst 5-19year-old Canadians between 2005 and 2014. Prev Med. 2016;86:28–33.

    Article  Google Scholar 

  49. Hirvensalo M, Telama R, Schmidt MD, Tammelin TH, Yang X, Magnussen CG, Vkari JS, Raitakari OT. Daily steps among Finnish adults: variation by age, sex, and socioeconomic position. Scand J Public Health. 2011;39(7):669–77.

    Article  Google Scholar 

  50. Inoue S, Ohya Y, Tudor-Locke C, Tanaka S, Yoshiike N, Shimomitsu T. Time trends for step-determined physical activity among Japanese adults. Med Sci Sports Exerc. 2011;43(10):1913–9.

    Article  Google Scholar 

  51. Schneider PL, Crouter S, Bassett DR Jr. Pedometer measures of free-living physical activity: comparison of 13 models. Med Sci Sports Exerc. 2004;36(2):331–5.

    Article  Google Scholar 

  52. Steeves JA, Tyo BM, Connolly CP, Gregory DA, Stark NA, Bassett DR Jr. Validity and reliability of the Omron HJ-303 tri-axial accelerometer-based pedometer. J Phys Activ Health. 2011;8(7):1014–20.

    Article  Google Scholar 

  53. Bergman RJ, Bassett DR Jr, Muthukrishnan S, Klein DA. Validity of 2 devices for measuring steps taken by older adults in assisted-living facilities. J Phys Activ Health. 2008;5(Suppl 1):166–75.

    Article  Google Scholar 

  54. Nakae S, Oshima Y, Ishii K. Accuracy of spring-levered and piezo-electric pedometers in primary school Japanese children. J Physiol Anthropol. 2008;27(5):233–9.

    Article  Google Scholar 

  55. Nelson MB, Kaminsky LA, Dickin DC, Montoye AH. Validity of consumer-based physical activity monitors for specific activity types. Med Sci Sports Exerc. 2016;48(8):1619–28.

    Article  Google Scholar 

  56. Tudor-Locke C, Bassett DR Jr. How many steps/day are enough? Preliminary pedometer indices for public health. Sports Med. 2004;34(1):1–8.

    Article  Google Scholar 

  57. Tudor-Locke C, Hatano Y, Pangrazi RP, Kang M. Revisiting “How many steps are enough?”. Med Sci Sports Exerc. 2008;40(7):S537–43.

    Article  Google Scholar 

  58. Tudor-Locke C, Craig CL, Beets MW, Belton S, Cardon GM, Duncan S, Hatano Y, Lubans DR, Olds TS, Raustorp A, Rowe DA, Spence JC, Tanaka S, Blair SN. How many steps/day are enough? For children and adolescents. Int J Behav Nutr Phys Act. 2011;8:78.

    Article  Google Scholar 

  59. Tudor-Locke C, Bell RC, Myers AM, Harris SB, Lauzon N, Rodger NW. Pedometer-determined ambulatory activity in individuals with type 2 diabetes. Diabetes Res Clin Pract. 2002;55(3):191–9.

    Article  Google Scholar 

  60. Tudor-Locke C, Pangrazi RP, Corbin CB, Rutherford WJ, Vincent SD, Raustorp A, Tomson LM, Cuddihy TF. BMI-referenced standards for recommended pedometer-determined steps/day in children. Prev Med. 2004;38(6):857–64.

    Article  Google Scholar 

  61. Tudor-Locke C, Bassett DR Jr, Rutherford WJ, Ainsworth BE, Chan CB, Croteau K, Giles-Corti B, Le Masurier G, Moreau K, Mrozek J, Oppert JM, Raustorp A, Strath SJ, Thompson D, Whitt-Glover MC, Wilde B, Wojcik JR. BMI-referenced cut points for pedometer-determined steps per day in adults. J Phys Activ Health. 2008;5(1 Suppl):S126–S39.

    Article  Google Scholar 

  62. Tudor-Locke C, Craig CL, Thyfault JP, Spence JC. A step-defined sedentary lifestyle index: <5000 steps/day. Appl Physiol Nutr Metabol. 2013;38:100–14.

    Article  Google Scholar 

  63. Crouter SE, Clowers KG, Bassett DR. A novel method for using accelerometer data to predict energy expenditure. J Appl Physiol. 2006;100(4):1324–31.

    Article  Google Scholar 

  64. Crouter SE, Kuffel E, Haas JD, Frongillo EA, Bassett DRB. Refined two-regression model for the ActiGraph accelerometer. Med Sci Sports Exerc. 2010;42(5):1029–37.

    Article  Google Scholar 

  65. Esliger DW, Rowlands AV, Hurst TL, Catt M, Murray P, Eston RG. Validation of the GENEA accelerometer. Med Sci Sports Exerc. 2011;43(6):1085–93.

    Article  Google Scholar 

  66. Matthews CE, Chen KY, Freedson PS, Buchowski MS, Beech BM, Pate RR, Troiano RP. Amount of time spent in sedentary behaviors in the United States, 2003-2004. Am J Epidemiol. 2008;167(7):875–81.

    Article  Google Scholar 

  67. Kozey-Keadle S, Libertine A, Lyden K, Staudenmayer J, Freedson PS. Validation of wearable monitors for assessing sedentary behavior. Med Sci Sports Exerc. 2011;43(8):1561–7.

    Article  Google Scholar 

  68. Silva P, Aires L, Santos RM, Vale S, Welk G, Mota J. Lifespan snapshot of physical activity assessed by accelerometry in Porto. J Phys Activ Health. 2011;8(3):352–60.

    Article  Google Scholar 

  69. Healy GN, Clark BK, Winkler EA, Gardiner PA, Brown WJ, Matthews CE. Measurement of adults’ sedentary time in population-based studies. Am J Prev Med. 2011;41(2):216–27.

    Article  Google Scholar 

  70. Choi L, Liu Z, Matthews CE, Buchowski MS. Validation of accelerometer wear and nonwear time classification algorithm. Med Sci Sports Exerc. 2011;43(2):357–64.

    Article  Google Scholar 

  71. Troiano RP, McClain JJ, Brychta RJ, Chen KY. Evolution of accelerometer methods for physical activity research. Br J Sport Med. 2014;48(13):1019–23.

    Article  Google Scholar 

  72. Bankoski A, Harris TB, McClain JJ, Brychta RJ, Caserotti P, Chen KY, Berrigan D, Troiano RP, Koster A. Sedentary activity associated with metabolic syndrome independent of physical activity. Diabetes Care. 2011;34(2):497–503.

    Article  Google Scholar 

  73. Manns P, Ezeugwu V, Armijo-Olivo S, Vallance J, Healy GN. Accelerometer-derived pattern of sedentary and physical activity time in persons with mobility disability: National Health and Nutrition Examination Survey 2003 to 2006. J Am Geriatr Soc. 2015;63(7):1314–23.

    Article  Google Scholar 

  74. Loprinzi PD, Gilham B, Cardinal BJ. Association between accelerometer-assessed physical activity and objectively measured hearing sensitivity among U.S. adults with diabetes. Res Q Exercise Sport. 2014;85(3):390–7.

    Article  Google Scholar 

  75. Vallance JK, Buman MP, Stevinson C, Lynch BM. Associations of overall sedentary time and screen time with sleep outcomes. Am J Health Behav. 2015;39(1):62–7.

    Article  Google Scholar 

  76. Loprinzi PD, Abbott K. Association of diabetic peripheral arterial disease and objectively-measured physical activity: NHANES 2003-2004. J Diabetes Metab Disord. 2014;13:63.

    Article  Google Scholar 

  77. Van Dyck D, Cerin E, De Bourdeaudhuij I, Hinckson E, Reis RS, Davey R, Sarmiento OL, Mitas J, Troelsen J, MacFarlane D, Salvo D, Aguinaga-Ontoso I, Owen N, Cain KL, Sallis JF. International study of objectively-measured physical activity and sedentary time with body mass index and obesity: IPEN adult study. Int J Obesity. 2015;39(2):199–207.

    Article  Google Scholar 

  78. Evenson KR, Wen F, Herring AH, Di C, LaMonte MJ, Fels-Tinker L, Lee I-M, Rillamas-Sun E, LaCroix AZ, Buchner DM. Calibrating physical activity intensity for hip-worn accelerometry in women age 60 to 91 years: the Women’s Health Initiative OPACH calibration study. Pre Med Rep. 2015;2:750–6.

    Google Scholar 

  79. Jefferis BJ, Sartini C, Shiroma E, Whincup PH, Wannamethee SG, Lee IM. Duration and breaks in sedentary behaviour: accelerometer data from 1566 community-dwelling older men (British Regional Heart Study). Br J Sport Med. 2015;49(24):1591–4.

    Article  Google Scholar 

  80. Lyden K, Kozey Keadle SL, Staudenmayer JW, Freedson PS. Validity of two wearable monitors to estimate breaks from sedentary time. Med Sci Sports Exerc. 2012;44(11):2243–52.

    Article  Google Scholar 

  81. Rowlands AV, Olds TS, Hillsdon M, Pulsford R, Hurst TL, Eston RG, Gomersall SR, Johnston K, Langford J. Assessing sedentary behavior with the GENEActiv: introducing the sedentary sphere. Med Sci Sports Exerc. 2014;46(6):1235–47.

    Article  Google Scholar 

  82. Rowlands AV, Yates T, Olds TS, Davies M, Khunti K, Edwardson CL. Sedentary sphere: wrist-worn accelerometer-brand independent posture classification. Med Sci Sports Exerc. 2016;48(4):748–54.

    Article  Google Scholar 

  83. Staudenmayer J, Zhu W, Catellier DJ. Statistical considerations in the analysis of accelerometry-based activity monitor data. Med Sci Sports Exerc. 2012;44(1):561–S567.

    Google Scholar 

  84. Mannini A, Sabatini AM. Machine learning methods for classifying human physical activity from on-body accelerometers. Sensors. 2010;10(2):1154–75.

    Article  Google Scholar 

  85. Ravi N, Dandekar N, Mysore P, Littman ML. Activity recognition from accelerometer data, vol. 5. Association for the Advancement of Artificial Intelligence; 2005. p. 1541–6.

    Google Scholar 

  86. Fairclough SJ, Noonan R, Rowlands AV, Van Hees V, Knowles Z, Boddy LM. Wear compliance and activity in children wearing wrist- and hip-mounted accelerometers. Med Sci Sports Exerc. 2016;48(2):245–53.

    Article  Google Scholar 

  87. Welk GJ, McClain J, Ainsworth BE. Protocols for evaluating equivalency of accelerometry-based activity monitors. Med Sci Sports Exerc. 2012;44(1 Suppl):S39–49.

    Article  Google Scholar 

  88. Sedentary Behaviour Research Network. Standardized use of the terms “sedentary” and “sedentary behaviours”. Appl Physiol Nutr Metabol. 2012;37:540–2.

    Article  Google Scholar 

  89. Dunton GF, Dzubur E, Kawabata K, Yanez B, Bo B, Intille S. Development of a smartphone application to measure physical activity using sensor-assisted self-report. Front Public Health. 2014;2:12.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Ainsworth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ainsworth, B., Rivière, F., Florez-Pregonero, A. (2023). Measurement of Sedentary Behaviour in Population Studies. In: Leitzmann, M.F., Jochem, C., Schmid, D. (eds) Sedentary Behaviour Epidemiology. Springer Series on Epidemiology and Public Health. Springer, Cham. https://doi.org/10.1007/978-3-031-41881-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-41881-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-41880-8

  • Online ISBN: 978-3-031-41881-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics