Skip to main content

Bringing Photosynthesis 2.0 to Life

  • Chapter
  • First Online:
Curious Future Insight
  • 232 Accesses

Abstract

Can we redesign the central operating system of the global carbon cycle? Natural photosynthesis provides the blueprint for the sustainable capture and conversion of carbon dioxide (CO2) at planetary scale. Yet, it is only one possible solution that nature has realized over billions of years. Recent research has identified several new principles of CO2 fixation, which are more efficient than those used by photosynthesis. Moreover, with the advent of synthetic biology, it has become possible to further expand this natural diversity of biological CO2 fixation by “new-to-nature solutions". This opens up the possibility to develop radically novel, more efficient biological paths for CO2 conversions that nature has not explored so far. Here, we will discuss current efforts and challenges in designing and realizing such new solutions that could pave the way towards a human-made, alternative photosynthesis 2.0.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literature

  1. Bassham JA, Benson AA, Kay LD, Harris AZ, Wilson AT, Calvin M. The path of carbon in photosynthesis. XXI. The cyclic regeneration of carbon dioxide acceptor. J Am Chem Soc. 1954;76(7):1760–70.

    Article  Google Scholar 

  2. Walker BJ, VanLoocke A, Bernacchi CJ, Ort DR. The costs of photorespiration to food production now and in the future. Annu Rev. Plant Biol. 2016;67:107–29.

    Article  PubMed  Google Scholar 

  3. Turmo A, Gonzalez-Esquer CR, Kerfeld CA. Carboxysomes: metabolic modules for CO2 fixation. FEMS Microb Lett. 2017;364(18):fnx176.

    Article  Google Scholar 

  4. Wunder T, Mueller-Cajar O. Biomolecular condensates in photosynthesis and metabolism. Curr Op Plant Biol. 2020;58:1–7.

    Article  Google Scholar 

  5. Hatch MD, Slack CR. Photosynthesis by sugar-cane leaves. A new carboxylation reaction and the pathway of sugar formation. Biochem J. 1966;101:103–11.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Osmond CB. Crassulacean acid metabolism: a curiosity in context. Annu Rev Plant Physiol. 1978;29:379–414.

    Article  Google Scholar 

  7. Berg IA. Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. App Env Microbiol. 2011;77(6):1925–36.

    Article  Google Scholar 

  8. Bierbaumer S, Nattermann M, Schulz L, et al. Enzymatic conversion of CO2: From natural to artificial utilization. Chem Rev. 2023;123(9):5702–54.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Erb TJ, Berg IA, Brecht V, Müller M, Fuchs G, Alber BE. Synthesis of C5-dicarboxylic acids from C2-units involving crotonyl-CoA carboxylase/reductase: the ethylmalonyl-CoA pathway. Proc Natl Acad Sci. 2007;104(25):10631–6.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Könneke M, Schubert DM, Brown PC, et al. Ammonia-oxidizing archaea use the most energy-efficient aerobic pathway for CO2 fixation. Proc Natl Acad Sci. 2014;111(22):8239–44.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Schada von Borzyskowski L, Severi F, Krüger K, et al. Marine Proteobacteria metabolize glycolate via the β-hydroxyaspartate cycle. Nature. 2019;575(7783):500–4.

    Article  PubMed  Google Scholar 

  12. Erb TJ, Brecht V, Fuchs G, Müller M, Alber BE. Carboxylation mechanism and stereochemistry of crotonyl-CoA carboxylase/reductase, a carboxylating enoyl-thioester reductase. Proc Natl Acad Sci. 2009;106(22):8871–6.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Rosenthal RG, Ebert MO, Kiefer P, Peter DM, Vorholt JA, Erb TJ. Direct evidence for a covalent ene adduct intermediate in NAD(P)H-dependent enzymes. Nat Chem Biol. 2014;10(1):50–5.

    Article  PubMed  Google Scholar 

  14. Rosenthal RG, Vögeli B, Wagner T, Shima S, Erb TJ. A conserved threonine prevents self-intoxication of enoyl-thioester reductases. Nat Chem Biol. 2017;13(7):745–9.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Stoffel GMM, Saez DA, DeMirci H, et al. Four amino acids define the CO2 binding pocket of enoyl-CoA carboxylases/reductases. Proc Natl Acad Sci. 2019;116(28):13964–9.

    Article  PubMed  PubMed Central  Google Scholar 

  16. DeMirci H, Rao Y, Stoffel GM, et al. Intersubunit coupling enables fast CO2-fixation by reductive carboxylases. ACS Centr Sci. 2022;8(8):1091–101.

    Article  Google Scholar 

  17. Peter DM, Schada von Borzyskowski L, Kiefer P, Christen P, Vorholt JA, Erb TJ. Screening and engineering the synthetic potential of carboxylating reductases from central metabolism and polyketide biosynthesis. Angew Chem Int Ed. 2015;54(45):13457–61.

    Article  Google Scholar 

  18. Bernhardsgrütter I, Schell K, Peter DM, et al. Awakening the sleeping carboxylase function of enzymes: engineering the natural CO2-binding potential of reductases. J Am Chem Soc. 2019;141(25):9778–82.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Scheffen M, Marchal DG, Beneyton T, et al. A new-to-nature carboxylation module to improve natural and synthetic CO2 fixation. Nat Catal. 2021;4(2):105–15.

    Article  Google Scholar 

  20. Wurtzel ET, Vickers CE, Hanson AD, et al. Revolutionizing agriculture with synthetic biology. Nat Plants. 2019;5(12):1207–10.

    Article  PubMed  Google Scholar 

  21. Erb TJ, Jones PR, Bar-Even A. Synthetic metabolism: metabolic engineering meets enzyme design. Curr Op Chem Biol. 2017;37:56–62.

    Article  Google Scholar 

  22. Schwander T, Schada von Borzyskowski L, Burgener S, et al. A synthetic pathway for the fixation of carbon dioxide in vitro. Science. 2016;354(6314):900–4.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Trudeau DL, Edlich-Muth C, Zarzycki J, et al. Design and in vitro realization of carbon-conserving photorespiration. Proc Natl Acad Sci. 2019;115(49):E11455–64.

    Google Scholar 

  24. Pandi A, Diehl C, Yazdizadeh Kharrazi A, Scholz SA, et al. A versatile active learning workflow for optimization of genetic and metabolic networks. Nat Comm. 2022;13(1):1–15.

    Article  Google Scholar 

  25. Sundaram S, Diehl C, Cortina NS, Bamberger J, Paczia N, Erb TJ. A modular in vitro platform for the production of terpenes and polyketides from CO2. Angew Chem Int Ed. 2020;60(30):16420–5.

    Article  Google Scholar 

  26. Diehl C, Gerlinger PD, Paczia N, Erb TJ. Synthetic anaplerotic modules for the direct synthesis of complex molecules from CO2. Nat Chem Biol. 2023;19(2):168–75.

    Article  PubMed  Google Scholar 

  27. Miller TE, Beneyton T, Schwander T, et al. Bottom-up construction of a chloroplast mimic capable of light-driven synthetic CO2 fixation. Science. 2020;368(6491):649–54.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Satanowski A, Dronsella B, Noor E, et al. Awakening a latent carbon fixation cycle in Escherichia coli. Nat Comm. 2020;11(1):5812.

    Article  Google Scholar 

  29. Kim S, Lindner SN, Aslan S, Yishai O, Wenk S, Schann K, Bar-Even A. Growth of E. coli on formate and methanol via the reductive glycine pathway. Nat Chem Biol. 2020;16(5):538–45.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

I would like to thank the many friends, colleagues, and mentors that encouraged, supported, and inspired me, in particular Georg Fuchs, Birgit Alber, John A. Gerlt, Ivan Berg, and Julia Vorholt. I have been blessed to work in and with a team of outstanding scientists and wonderful human beings, and have received generous support through many funding agencies in different countries. I am very grateful for the long-term trust and support by the Max Planck Society. Finally, I would like to express my very personal thanks to my parents, Heidi and Hansjörg Erb, who have always supported me along the way, as well as my family, Annette, Florian, and Jule, my joy and my personal source of energy and inspiration. This text is based on thoughts and elements of several publications and presentations from our lab over the years. 

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias J. Erb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Erb, T.J. (2024). Bringing Photosynthesis 2.0 to Life. In: Betz, U.A. (eds) Curious Future Insight. Springer, Cham. https://doi.org/10.1007/978-3-031-41781-8_3

Download citation

Publish with us

Policies and ethics