Skip to main content

Ethics and Accountability of Science in Action

  • Chapter
  • First Online:
Actionable Science of Global Environment Change
  • 134 Accesses

Abstract

The ethical obligations of scientists are to ensure the integrity, reliability, and reproducibility of the science results. This chapter presents practical strategies and recommendations for fostering ethics and accountability in science. It advocates for collaborative and interdisciplinary approaches, transparent reporting, and robust peer review processes. Additionally, the chapter calls for the engagement of diverse stakeholders, including marginalized communities, in the scientific process to ensure their voices are heard and their perspectives are considered. It underscores the ethics and accountability in scientific research and its application to addressing climate and environmental issues in real world use cases. It also emphasizes the need for scientists to embrace ethical principles, promote transparency, and engage with stakeholders to ensure the responsible and equitable use of science in addressing pressing societal and environmental challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alnaim, Ahmed, and Ziheng Sun. 2022. Using Geoweaver to make snow mapping workflow FAIR. In 2022 IEEE 18th international conference on e-science (e-science), 409–410. Piscataway: IEEE.

    Chapter  Google Scholar 

  • Bachmann, John. 2007. Will the circle be unbroken: A history of the US national ambient air quality standards. Journal of the Air & Waste Management Association 57 (6): 652–697.

    Article  CAS  Google Scholar 

  • Belden, Roy S. 2001. The clean air act. Chicago: American Bar Association.

    Google Scholar 

  • Boston, Jonathan, and Frieder Lempp. 2011. Climate change: Explaining and solving the mismatch between scientific urgency and political inertia. Accounting, Auditing & Accountability Journal 24: 1000.

    Article  Google Scholar 

  • Brewerton, Paul M., and Lynne J. Millward. 2001. Organizational research methods: A guide for students and researchers. London: Sage.

    Book  Google Scholar 

  • Cushing, Lara, Dan Blaustein-Rejto, Madeline Wander, Manuel Pastor, James Sadd, Allen Zhu, and Rachel Morello-Frosch. 2018. Carbon trading, co-pollutants, and environmental equity: Evidence from California’s cap-and-trade program (2011–2015). PLoS Medicine 15 (7): e1002604.

    Article  PubMed  PubMed Central  Google Scholar 

  • Edwards, Marc A., and Siddhartha Roy. 2017. Academic research in the 21st century: Maintaining scientific integrity in a climate of perverse incentives and hypercompetition. Environmental Engineering Science 34 (1): 51–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ganji, Geetha Satya Mounika, and Wai Hang Chow Lin. 2023. Explainable AI for understanding ML-derived vegetation products. In Artificial intelligence in earth science, 317–335. Elsevier.

    Chapter  Google Scholar 

  • Gardiner, Stephen M. 2010. Ethics and climate change: An introduction. Wiley Interdisciplinary Reviews: Climate Change 1 (1): 54–66.

    Google Scholar 

  • Glynn, Pierre D., Alexey A. Voinov, Carl D. Shapiro, and Paul A. White. 2017. From data to decisions: Processing information, biases, and beliefs for improved management of natural resources and environments. Earth’s Future 5 (4): 356–378.

    Article  ADS  Google Scholar 

  • Grubb, Michael. 1995. Seeking fair weather: Ethics and the international debate on climate change. International Affairs 71 (3): 463–496.

    Article  Google Scholar 

  • Hallegatte, Stéphane. 2009. Strategies to adapt to an uncertain climate change. Global Environmental Change 19 (2): 240–247.

    Article  Google Scholar 

  • Hassan, Abeer, Andrew Wright, and John Struthers. 2013. Carbon disclosure project (CDP) scores and the level of disclosure on climate change related activities: An empirical investigation of the FTSE 100 companies. International Journal of Sustainable Economy 5 (1): 36–52.

    Article  Google Scholar 

  • Hedberg, Berith, and Ullabeth Sätterlund Larsson. 2004. Environmental elements affecting the decision-making process in nursing practice. Journal of Clinical Nursing 13 (3): 316–324.

    Article  PubMed  Google Scholar 

  • Hodson, Derek. 2003. Time for action: Science education for an alternative future. International Journal of Science Education 25 (6): 645–670.

    Article  ADS  Google Scholar 

  • Howe, Kimberly. 2022. Trauma to self and other: Reflections on field research and conflict. Security Dialogue 53 (4): 363–381.

    Article  Google Scholar 

  • Hwang, Gwo-Jen, Haoran Xie, Benjamin W. Wah, and Dragan Gašević. 2020. Vision, challenges, roles and research issues of artificial intelligence in education. Computers and Education: Artificial Intelligence 1: 100001.

    Google Scholar 

  • Reitze, J., and W. Arnold. 2004. Air quality protection using state implementation plans-thirty-seven years of increasing complexity. Vill. Envtl. LJ 15: 209.

    Google Scholar 

  • Jansen, M. A. K., P. W. Barnes, J. F. Bornman, K. C. Rose, S. Madronich, C. C. White, R. G. Zepp, and A. L. Andrady. 2023 “The Montreal Protocol and the fate of environmental plastic debris.” Photochemical & Photobiological Sciences 1–9.

    Google Scholar 

  • Knox, Stephen, Matthew Hannon, Fraser Stewart, and Rebecca Ford. 2022. The (in) justices of smart local energy systems: A systematic review, integrated framework, and future research agenda. Energy Research & Social Science 83: 102333.

    Article  Google Scholar 

  • Kriebel, David, Joel Tickner, Paul Epstein, John Lemons, Richard Levins, Edward L. Loechler, Margaret Quinn, Ruthann Rudel, Ted Schettler, and Michael Stoto. 2001. The precautionary principle in environmental science. Environmental Health Perspectives 109 (9): 871–876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krimsky, Sheldon. 2004. Science in the private interest: Has the lure of profits corrupted biomedical research? Lanham: Rowman & Littlefield.

    Google Scholar 

  • Lowe, J. John. 2001. Abrupt climatic changes in Europe during the last glacial–interglacial transition: the potential for testing hypotheses on the synchroneity of climatic events using tephrochronology. Global and Planetary Change 30 (1–2): 73–84.

    Google Scholar 

  • Marín-Spiotta, Erika, Rebecca T. Barnes, Asmeret Asefaw Berhe, Meredith G. Hastings, Allison Mattheis, Blair Schneider, and Billy M. Williams. 2020. Hostile climates are barriers to diversifying the geosciences. Advances in Geosciences 53: 117–127.

    Article  ADS  Google Scholar 

  • O’Neill, Brian C., Elmar Kriegler, Keywan Riahi, Kristie L. Ebi, Stephane Hallegatte, Timothy R. Carter, Ritu Mathur, and Detlef P. Van Vuuren. 2014. A new scenario framework for climate change research: The concept of shared socioeconomic pathways. Climatic Change 122: 387–400.

    Article  ADS  Google Scholar 

  • Plummer, Stephen, Pascal Lecomte, and Mark Doherty. 2017. The ESA climate change initiative (CCI): A European contribution to the generation of the global climate observing system. Remote Sensing of Environment 203: 2–8.

    Article  ADS  Google Scholar 

  • Rickards, Lauren, John Wiseman, and Yoshi Kashima. 2014. Barriers to effective climate change mitigation: The case of senior government and business decision makers. Wiley Interdisciplinary Reviews: Climate Change 5 (6): 753–773.

    Google Scholar 

  • Rillig, Matthias C., Marlene Ågerstrand, Mohan Bi, Kenneth A. Gould, and Uli Sauerland. 2023. Risks and benefits of large language models for the environment. Environmental Science & Technology 57 (9): 3464–3466.

    Article  CAS  ADS  Google Scholar 

  • Rivas, Pablo, Christopher Thompson, Brenda Tafur, Bikram Khanal, Olawale Ayoade, Tonni Das Jui, Korn Sooksatra, Javier Orduz, and Gissella Bejarano. 2023. AI ethics for earth sciences. In Artificial intelligence in earth science, 379–396. Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Roberts, Julian V., Loretta J. Stalans, David Indermaur, and Mike Hough. 2002. Penal populism and public opinion: Lessons from five countries. Oxford: Oxford University Press.

    Google Scholar 

  • Sarewitz, Daniel. 2004. How science makes environmental controversies worse. Environmental Science & Policy 7 (5): 385–403.

    Article  Google Scholar 

  • Sun, Ziheng, Liping Di, Annie Burgess, Jason A. Tullis, and Andrew B. Magill. 2020. Geoweaver: Advanced cyberinfrastructure for managing hybrid geoscientific AI workflows. ISPRS International Journal of Geo-Information 9 (2): 119.

    Article  ADS  Google Scholar 

  • Sun, Ziheng, and Nicoleta Cristea. 2021. Geoweaver for Automating ML-based High Resolution Snow Mapping Workflow. In AGU Fall Meeting Abstracts, vol. 2021, pp. IN11C-07.

    Google Scholar 

  • Sun, Ziheng, Laura Sandoval, Robert Crystal-Ornelas, S. Mostafa Mousavi, Jinbo Wang, Cindy Lin, Nicoleta Cristea et al. 2022. A review of earth artificial intelligence. Computers & Geosciences 159 (2022): 105034.

    Google Scholar 

  • Süsser, Diana, Hannes Gaschnig, Andrzej Ceglarz, Vassilis Stavrakas, Alexandros Flamos, and Johan Lilliestam. 2022. Better suited or just more complex? On the fit between user needs and modeller-driven improvements of energy system models. Energy 239: 121909.

    Google Scholar 

  • Tennant, Jonathan P. 2018. The state of the art in peer review. FEMS Microbiology Letters 365 (19): fny204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vai, Marjorie, and Kristen Sosulski. 2015. Essentials of online course design: A standards-based guide. New York: Routledge.

    Book  Google Scholar 

  • Von Schomberg, Rene. 2013. A vision of responsible research and innovation. In Responsible innovation: Managing the responsible emergence of science and innovation in society, 51–74. New York: Wiley.

    Chapter  Google Scholar 

  • Yesson, Chris, Peter W. Brewer, Tim Sutton, Neil Caithness, Jaspreet S. Pahwa, Mikhaila Burgess, W. Alec Gray et al. 2007. How global is the global biodiversity information facility?. PloS One 2 (11): e1124.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziheng Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sun, Z. (2023). Ethics and Accountability of Science in Action. In: Sun, Z. (eds) Actionable Science of Global Environment Change. Springer, Cham. https://doi.org/10.1007/978-3-031-41758-0_14

Download citation

Publish with us

Policies and ethics