Skip to main content

Advances in Microbial NMR Metabolomics

  • Chapter
  • First Online:
Microbial Natural Products Chemistry

Abstract

Confidently, nuclear magnetic resonance (NMR) is the most informative technique in analytical chemistry and its use as an analytical platform in metabolomics is well proven. This chapter aims to present NMR as a viable tool for microbial metabolomics discussing its fundamental aspects and applications in metabolomics using some chosen examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wishart DS (2019) NMR metabolomics: a look ahead. J Magn Reson 306:155–161

    Article  CAS  PubMed  Google Scholar 

  2. Shoulders B (2000) High-resolution NMR techniques in organic chemistry. Tetrahedron organic chemistry series volume 19 by Timothy D. W. Claridge (Dyson Perrins Laborotory, Oxford). Pergamon: Oxford. 1999. ix + 384 pp. Hardbound $134.50, ISBN 0-08-042799-5. Paperback $49.50, ISBN 0-08-042798-7. J Am Chem Soc 122(33):8104–8104

    Article  CAS  Google Scholar 

  3. Soares V, Bezerra T, Lafetá R, Borges R, da Silva AJ (2016) Three new steroidal Glycoalkaloids from Solanum pseudoquina A. St.-Hil. (Solanaceae). J Braz Chem Soc 28:782–789

    Google Scholar 

  4. Simmler C, Napolitano JG, McAlpine JB, Chen SN, Pauli GF (2014) Universal quantitative NMR analysis of complex natural samples. Curr Opin Biotechnol 25:51–59

    Article  CAS  PubMed  Google Scholar 

  5. Westwood S, Yamazaki T, Huang T, Garrido B, Ün I, Zhang W, Martos G, Stoppacher N, Saito T, Wielgosz R (2019) Development and validation of a suite of standards for the purity assignment of organic compounds by quantitative NMR spectroscopy. Metrologia 56(6)

    Google Scholar 

  6. Emwas A-HM (2015) The strengths and weaknesses of NMR spectroscopy and mass spectrometry with particular focus on metabolomics research. In: Bjerrum JT (ed) Metabonomics: methods and protocols. Springer New York, New York, pp 161–193

    Chapter  Google Scholar 

  7. Evard H, Kruve A, Leito I (2016) Tutorial on estimating the limit of detection using LC-MS analysis, part I: theoretical review. Anal Chim Acta 942:23–39

    Article  CAS  PubMed  Google Scholar 

  8. Wang M, Carver JJ, Phelan VV, Sanchez LM, Garg N, Peng Y, Nguyen DD, Watrous J, Kapono CA, Luzzatto-Knaan T, Porto C, Bouslimani A, Melnik AV, Meehan MJ, Liu WT, Crusemann M, Boudreau PD, Esquenazi E, Sandoval-Calderon M, Kersten RD, Pace LA, Quinn RA, Duncan KR, Hsu CC, Floros DJ, Gavilan RG, Kleigrewe K, Northen T, Dutton RJ, Parrot D, Carlson EE, Aigle B, Michelsen CF, Jelsbak L, Sohlenkamp C, Pevzner P, Edlund A, McLean J, Piel J, Murphy BT, Gerwick L, Liaw CC, Yang YL, Humpf HU, Maansson M, Keyzers RA, Sims AC, Johnson AR, Sidebottom AM, Sedio BE, Klitgaard A, Larson CB, Torres-Mendoza CABPD, Gonzalez DJ, Silva DB, Marques LM, Demarque DP, Pociute E, O'Neill EC, Briand E, Helfrich EJN, Granatosky EA, Glukhov E, Ryffel F, Houson H, Mohimani H, Kharbush JJ, Zeng Y, Vorholt JA, Kurita KL, Charusanti P, McPhail KL, Nielsen KF, Vuong L, Elfeki M, Traxler MF, Engene N, Koyama N, Vining OB, Baric R, Silva RR, Mascuch SJ, Tomasi S, Jenkins S, Macherla V, Hoffman T, Agarwal V, Williams PG, Dai J, Neupane R, Gurr J, Rodriguez AMC, Lamsa A, Zhang C, Dorrestein K, Duggan BM, Almaliti J, Allard PM, Phapale P, Nothias LF, Alexandrov T, Litaudon M, Wolfender JL, Kyle JE, Metz TO, Peryea T, Nguyen DT, VanLeer D, Shinn P, Jadhav A, Muller R, Waters KM, Shi W, Liu X, Zhang L, Knight R, Jensen PR, Palsson BO, Pogliano K, Linington RG, Gutierrez M, Lopes NP, Gerwick WH, Moore BS, Dorrestein PC, Bandeira N (2016) Sharing and community curation of mass spectrometry data with global natural products social molecular networking. Nat Biotechnol 34(8):828–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Steinbeck C, Kuhn S (2004) NMRShiftDB -- compound identification and structure elucidation support through a free community-built web database. Phytochemistry 65(19):2711–2717

    Article  CAS  PubMed  Google Scholar 

  10. Bingol K, Li DW, Bruschweiler-Li L, Cabrera OA, Megraw T, Zhang F, Bruschweiler R (2015) Unified and isomer-specific NMR metabolomics database for the accurate analysis of (13)C-(1)H HSQC spectra. ACS Chem Biol 10(2):452–459

    Article  CAS  PubMed  Google Scholar 

  11. Bingol K, Li DW, Zhang B, Bruschweiler R (2016) Comprehensive metabolite identification strategy using multiple two-dimensional NMR spectra of a complex mixture implemented in the COLMARm web server. Anal Chem 88(24):12411–12418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sorokina M, Steinbeck C (2020) Review on natural products databases: where to find data in 2020. J Cheminform 12(1):20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Borges RM, Colby SM, Das S, Edison AS, Fiehn O, Kind T, Lee J, Merrill AT, Merz KM Jr, Metz TO, Nunez JR, Tantillo DJ, Wang LP, Wang S, Renslow RS (2021) Quantum chemistry calculations for metabolomics. Chem Rev 121(10):5633–5670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jonas E, Kuhn S (2019) Rapid prediction of NMR spectral properties with quantified uncertainty. J Cheminform 11(1):50

    Article  PubMed  PubMed Central  Google Scholar 

  15. Luiz Paranhos Costa F, de Albuquerque ACF, Borges RM, dos Santos Junior FM, de Amorim MB (2014) High cost-effectiveness ratio: GIAO-MPW1PW91/6-31G(d)//MPW1PW91/6-31G(d) scaling factor for <SUP>13</SUP>C nuclear magnetic resonance chemical shifts calculation. J Comput Theor Nanosci 11(1):219–225

    Article  Google Scholar 

  16. Kuhn S, Johnson SR (2019) Stereo-aware extension of HOSE codes. ACS Omega 4(4):7323–7329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hayden HL, Rochfort SJ, Ezernieks V, Savin KW, Mele PM (2019) Metabolomics approaches for the discrimination of disease suppressive soils for Rhizoctonia solani AG8 in cereal crops using (1)H NMR and LC-MS. Sci Total Environ 651(Pt 1):1627–1638

    Article  CAS  PubMed  Google Scholar 

  18. Jousse C, Dalle C, Abila A, Traikia M, Diogon M, Lyan B, El Alaoui H, Vidau C, Delbac F (2020) A combined LC-MS and NMR approach to reveal metabolic changes in the hemolymph of honeybees infected by the gut parasite Nosema ceranae. J Invertebr Pathol 176:107478

    Article  CAS  PubMed  Google Scholar 

  19. Kuhn S, Colreavy-Donnelly S, Santana de Souza J, Borges RM (2019) An integrated approach for mixture analysis using MS and NMR techniques. Faraday Discuss 218:339–353

    Article  CAS  PubMed  Google Scholar 

  20. Leggett A, Wang C, Li DW, Somogyi A, Bruschweiler-Li L, Bruschweiler R (2019) Identification of unknown metabolomics mixture compounds by combining NMR, MS, and cheminformatics. Methods Enzymol 615:407–422

    Article  CAS  PubMed  Google Scholar 

  21. Morgan MA, Griffith CM, Dinges MM, Lyon YA, Julian RR, Larive CK (2019) Evaluating sub-lethal stress from roundup((R)) exposure in Artemia franciscana using (1)H NMR and GC-MS. Aquat Toxicol 212:77–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Silva EL, Almeida-Lafeta RC, Borges RM, Staerk D (2018) Athenolide a, a new steroidal lactone from the leaves of Athenaea martiana (Solanaceae) determined by means of HPLC-HR-MS-SPE-NMR analysis. Chem Biodivers 15(1)

    Google Scholar 

  23. Tomita S, Nakamura T, Okada S (2018) NMR- and GC/MS-based metabolomic characterization of sunki, an unsalted fermented pickle of turnip leaves. Food Chem 258:25–34

    Article  CAS  PubMed  Google Scholar 

  24. Walker LR, Hoyt DW, Walker SM 2nd, Ward JK, Nicora CD, Bingol K (2016) Unambiguous metabolite identification in high-throughput metabolomics by hybrid 1D (1) H NMR/ESI MS(1) approach. Magn Reson Chem 54(12):998–1003

    Article  CAS  PubMed  Google Scholar 

  25. Blaise BJ, Correia G, Tin A, Young JH, Vergnaud AC, Lewis M, Pearce JT, Elliott P, Nicholson JK, Holmes E, Ebbels TM (2016) Power analysis and sample size determination in metabolic phenotyping. Anal Chem 88(10):5179–5188

    Article  CAS  PubMed  Google Scholar 

  26. Chong J, Soufan O, Li C, Caraus I, Li S, Bourque G, Wishart DS, Xia J (2018) MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res 46(W1):W486–W494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Halouska S, Zhang B, Gaupp R, Lei S, Snell E, Fenton RJ, Barletta RG, Somerville GA, Powers R (2013) Revisiting protocols for the NMR analysis of bacterial metabolomes. J Integr OMICS 3(2):120–137

    PubMed  PubMed Central  Google Scholar 

  28. Broadhurst D, Goodacre R, Reinke SN, Kuligowski J, Wilson ID, Lewis MR, Dunn WB (2018) Guidelines and considerations for the use of system suitability and quality control samples in mass spectrometry assays applied in untargeted clinical metabolomic studies. Metabolomics 14(6):72

    Article  PubMed  PubMed Central  Google Scholar 

  29. Dunn WB, Broadhurst DI, Edison A, Guillou C, Viant MR, Bearden DW, Beger RD (2017) Quality assurance and quality control processes: summary of a metabolomics community questionnaire. Metabolomics 13(5):1–6

    Article  CAS  Google Scholar 

  30. Garcia CJ, Yang X, Huang D, Tomas-Barberan FA (2020) Can we trust biomarkers identified using different non-targeted metabolomics platforms? Multi-platform, inter-laboratory comparative metabolomics profiling of lettuce cultivars via UPLC-QTOF-MS. Metabolomics 16(8):85

    Article  CAS  PubMed  Google Scholar 

  31. Gouveia GJ, Shaver AO, Garcia BM, Morse AM, Andersen EC, Edison AS, McIntyre LM (2021) Long-term metabolomics reference material. Anal Chem 93(26):9193–9199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Maier TS, Kuhn J, Muller C (2010) Proposal for field sampling of plants and processing in the lab for environmental metabolic fingerprinting. Plant Methods 6:6

    Article  PubMed  PubMed Central  Google Scholar 

  33. Deborde C, Moing A, Roch L, Jacob D, Rolin D, Giraudeau P (2017) Plant metabolism as studied by NMR spectroscopy. Prog Nucl Magn Reson Spectrosc 102-103:61–97

    Article  CAS  PubMed  Google Scholar 

  34. Kim HK, Choi YH, Verpoorte R (2010) NMR-based metabolomic analysis of plants. Nat Protoc 5(3):536–549

    Article  CAS  PubMed  Google Scholar 

  35. Nagana Gowda GA, Raftery D (2017) Recent advances in NMR-based metabolomics. Anal Chem 89(1):490–510

    Article  CAS  PubMed  Google Scholar 

  36. Newton JM, Betts EL, Yiangou L, Ortega Roldan J, Tsaousis AD, Thompson GS (2021) Establishing a metabolite extraction method to study the metabolome of blastocystis using NMR. Molecules 26(11):3285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Robinette SL, Brüschweiler R, Schroeder FC, Edison AS (2012) NMR in metabolomics and natural products research: two sides of the same coin. Acc Chem Res 45(2):288–297

    Article  CAS  PubMed  Google Scholar 

  38. Schripsema J (2010) Application of NMR in plant metabolomics: techniques, problems and prospects. Phytochem Anal 21(1):14–21

    Article  CAS  PubMed  Google Scholar 

  39. Wang C, Timari I, Zhang B, Li DW, Leggett A, Amer AO, Bruschweiler-Li L, Kopec RE, Bruschweiler R (2020a) COLMAR lipids web server and ultrahigh-resolution methods for two-dimensional nuclear magnetic resonance- and mass spectrometry-based Lipidomics. J Proteome Res 19(4):1674–1683

    Article  CAS  PubMed  Google Scholar 

  40. Wang R, Li B, Lam SM, Shui G (2020b) Integration of lipidomics and metabolomics for in-depth understanding of cellular mechanism and disease progression. J Genet Genomics 47(2):69–83

    Article  CAS  PubMed  Google Scholar 

  41. Wist J (2017) Complex mixtures by NMR and complex NMR for mixtures: experimental and publication challenges. Magn Reson Chem 55(1):22–28

    Article  CAS  PubMed  Google Scholar 

  42. Zacharias HU, Altenbuchinger M, Gronwald W (2018) Statistical analysis of NMR metabolic fingerprints: established methods and recent advances. Meta 8(3)

    Google Scholar 

  43. Zabek A, Klimek-Ochab M, Jawien E, Mlynarz P (2017) Biodiversity in targeted metabolomics analysis of filamentous fungal pathogens by (1)H NMR-based studies. World J Microbiol Biotechnol 33(7):132

    Article  PubMed  PubMed Central  Google Scholar 

  44. Palama TL, Canard I, Rautureau GJ, Mirande C, Chatellier S, Elena-Herrmann B (2016) Identification of bacterial species by untargeted NMR spectroscopy of the exo-metabolome. Analyst 141(15):4558–4561

    Article  CAS  PubMed  Google Scholar 

  45. Beltran A, Suarez M, Rodriguez MA, Vinaixa M, Samino S, Arola L, Correig X, Yanes O (2012) Assessment of compatibility between extraction methods for NMR- and LC/MS-based metabolomics. Anal Chem 84(14):5838–5844

    Article  CAS  PubMed  Google Scholar 

  46. Mielko KA, Jablonski SJ, Lukaszewicz M, Mlynarz P (2021) Comparison of bacteria disintegration methods and their influence on data analysis in metabolomics. Sci Rep 11(1):20859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dong C, Reilly DK, Bergame C, Dolke F, Srinivasan J, von Reuss SH (2018) Comparative ascaroside profiling of Caenorhabditis exometabolomes reveals species-specific (omega) and (omega - 2)-hydroxylation downstream of peroxisomal beta-oxidation. J Org Chem 83(13):7109–7120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lugo Charriez K, Soledade Lemos L, Carrazana Y, Rodriguez-Casariego JA, Eirin-Lopez JM, Hauser-Davis RA, Gardinali P, Quinete N (2021) Application of an improved chloroform-free lipid extraction method to staghorn coral (Acropora cervicornis) lipidomics assessments. Bull Environ Contam Toxicol 107:92–99

    Article  CAS  PubMed  Google Scholar 

  49. Shiva S, Enninful R, Roth MR, Tamura P, Jagadish K, Welti R (2018) An efficient modified method for plant leaf lipid extraction results in improved recovery of phosphatidic acid. Plant Methods 14:14

    Article  PubMed  PubMed Central  Google Scholar 

  50. Edison AS, Colonna M, Gouveia GJ, Holderman NR, Judge MT, Shen X, Zhang S (2021) NMR: unique strengths that enhance modern metabolomics research. Anal Chem 93(1):478–499

    Article  CAS  PubMed  Google Scholar 

  51. Emwas AH, Roy R, McKay RT, Tenori L, Saccenti E, Gowda GAN, Raftery D, Alahmari F, Jaremko L, Jaremko M, Wishart DS (2019) NMR spectroscopy for metabolomics research. Meta 9(7):123

    CAS  Google Scholar 

  52. Forseth RR, Schroeder FC (2011) NMR-spectroscopic analysis of mixtures: from structure to function. Curr Opin Chem Biol 15(1):38–47

    Article  CAS  PubMed  Google Scholar 

  53. Hansen AL, Kupce ER, Li DW, Bruschweiler-Li L, Wang C, Bruschweiler R (2021) 2D NMR-based metabolomics with HSQC/TOCSY NOAH supersequences. Anal Chem 93(15):6112–6119

    Article  CAS  PubMed  Google Scholar 

  54. Malet-Martino M, Holzgrabe U (2011) NMR techniques in biomedical and pharmaceutical analysis. J Pharm Biomed Anal 55(1):1–15

    Article  CAS  PubMed  Google Scholar 

  55. Giraudeau P, Silvestre V, Akoka S (2015) Optimizing water suppression for quantitative NMR-based metabolomics: a tutorial review. Metabolomics 11(5):1041–1055

    Article  CAS  Google Scholar 

  56. Simpson AJ, Brown SA (2005) Purge NMR: effective and easy solvent suppression. J Magn Reson 175(2):340–346

    Article  CAS  PubMed  Google Scholar 

  57. Le Guennec A, Tayyari F, Edison AS (2017) Alternatives to nuclear overhauser enhancement spectroscopy presat and Carr-Purcell-Meiboom-Gill presat for NMR-based metabolomics. Anal Chem 89(17):8582–8588

    Article  PubMed  PubMed Central  Google Scholar 

  58. Meiboom S, Gill D (1958) Modified spin-Echo method for measuring nuclear relaxation times. Rev Sci Instrum 29(8):688–691

    Article  CAS  Google Scholar 

  59. Aguilar JA, Nilsson M, Bodenhausen G, Morris GA (2012) Spin echo NMR spectra without J modulation. Chem Commun 48(6):811–813

    Article  CAS  Google Scholar 

  60. Ferretti JA, Highet RJ, Pohl LR, Monks TJ, Hinson JA (1985) Two-dimensional J-resolved nuclear magnetic resonance spectral study of two bromobenzene glutathione conjugates. Environ Health Perspect 61:139–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Huang Y, Zhang Z, Chen H, Feng J, Cai S, Chen Z (2015) A high-resolution 2D J-resolved NMR detection technique for metabolite analyses of biological samples. Sci Rep 5(1):8390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kuhn S, Colreavy-Donnelly S, de Andrade Silva Quaresma LE, de Andrade Silva Quaresma E, Borges RM (2020) Applying NMR compound identification using NMRfilter to match predicted to experimental data. Metabolomics 16(12):123

    Article  CAS  PubMed  Google Scholar 

  63. Bakiri A, Hubert J, Reynaud R, Lanthony S, Harakat D, Renault JH, Nuzillard JM (2017) Computer-aided (13)C NMR chemical profiling of crude natural extracts without fractionation. J Nat Prod 80(5):1387–1396

    Article  CAS  PubMed  Google Scholar 

  64. Bruguiere A, Derbre S, Coste C, Le Bot M, Siegler B, Leong ST, Sulaiman SN, Awang K, Richomme P (2018) (13)C-NMR dereplication of Garcinia extracts: predicted chemical shifts as reliable databases. Fitoterapia 131:59–64

    Article  CAS  PubMed  Google Scholar 

  65. Clendinen CS, Pasquel C, Ajredini R, Edison AS (2015) (13)C NMR metabolomics: INADEQUATE network analysis. Anal Chem 87(11):5698–5706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Emwas AH, Saccenti E, Gao X, McKay RT, Dos Santos V, Roy R, Wishart DS (2018) Recommended strategies for spectral processing and post-processing of 1D (1)H-NMR data of biofluids with a particular focus on urine. Metabolomics 14(3):31

    Article  PubMed  PubMed Central  Google Scholar 

  67. Palaric C, Pilard S, Fontaine JX, Boccard J, Mathiron D, Rigaud S, Cailleu D, Mesnard F, Gut Y, Renaud T, Petit A, Beaumal JY, Molinie R (2019) Processing of NMR and MS metabolomics data using chemometrics methods: a global tool for fungi biotransformation reactions monitoring. Metabolomics 15(8):107

    Article  PubMed  Google Scholar 

  68. Hendriks MMWB, van Eeuwijk FA, Jellema RH, Westerhuis JA, Reijmers TH, Hoefsloot HCJ, Smilde AK (2011) Data-processing strategies for metabolomics studies. TrAC Trends Anal Chem 30(10):1685–1698

    Article  CAS  Google Scholar 

  69. van den Berg RA, Hoefsloot HC, Westerhuis JA, Smilde AK, van der Werf MJ (2006) Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics 7:142

    Article  PubMed  PubMed Central  Google Scholar 

  70. Dieterie F, Ross A, Schlotterbeck G, Senn H (2006) Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in 1H NMR metabonomics. Anal Chem 78:4281–4290

    Article  Google Scholar 

  71. Jackson JE (1991) Scaling of data. John Wiley & Sons, Inc

    Book  Google Scholar 

  72. Blaise BJ, Correia GDS, Haggart GA, Surowiec I, Sands C, Lewis MR, Pearce JTM, Trygg J, Nicholson JK, Holmes E, Ebbels TMD (2021) Statistical analysis in metabolic phenotyping. Nat Protoc 16(9):4299–4326

    Article  CAS  PubMed  Google Scholar 

  73. Keun HC, Ebbels TMD, Antti H, Bollard ME, Beckonert O, Holmes E, Lindon JC, Nicholson JK (2003) Improved analysis of multivariate data by variable stability scaling: application to NMR-based metabolic profiling. Anal Chim Acta 490(1–2):265–276

    Article  CAS  Google Scholar 

  74. Bararpour N, Gilardi F, Carmeli C, Sidibe J, Ivanisevic J, Caputo T, Augsburger M, Grabherr S, Desvergne B, Guex N, Bochud M, Thomas A (2020) Visualization and normalization of drift effect across batches in metabolome-wide association studies. BioRxiv

    Google Scholar 

  75. Kohl SM, Klein MS, Hochrein J, Oefner PJ, Spang R, Gronwald W (2012) State-of-the art data normalization methods improve NMR-based metabolomic analysis. Metabolomics 8(Suppl 1):146–160

    Article  CAS  PubMed  Google Scholar 

  76. Reinhold D, Pielke-Lombardo H, Jacobson S, Ghosh D, Kechris K (2019) Pre-analytic considerations for mass spectrometry-based untargeted metabolomics data. Methods Mol Biol 1978:323–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Silva LP, Lorenzi PL, Purwaha P, Yong V, Hawke DH, Weinstein JN (2013) Measurement of DNA concentration as a normalization strategy for metabolomic data from adherent cell lines. Anal Chem 85(20):9536–9542

    Article  CAS  PubMed  Google Scholar 

  78. Barnes S, Benton HP, Casazza K, Cooper SJ, Cui X, Du X, Engler J, Kabarowski JH, Li S, Pathmasiri W, Prasain JK, Renfrow MB, Tiwari HK (2016a) Training in metabolomics research. I. Designing the experiment, collecting and extracting samples and generating metabolomics data. J Mass Spectrom 51(7):461–475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Barnes S, Benton HP, Casazza K, Cooper SJ, Cui X, Du X, Engler J, Kabarowski JH, Li S, Pathmasiri W, Prasain JK, Renfrow MB, Tiwari HK (2016b) Training in metabolomics research. II. Processing and statistical analysis of metabolomics data, metabolite identification, pathway analysis, applications of metabolomics and its future. J Mass Spectrom 51(8):535–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Fay DS, Gerow K (2013) A biologist’s guide to statistical thinking and analysis. In: WormBook, pp 1–54

    Google Scholar 

  81. Gromski PS, Muhamadali H, Ellis DI, Xu Y, Correa E, Turner ML, Goodacre R (2015) A tutorial review: metabolomics and partial least squares-discriminant analysis--a marriage of convenience or a shotgun wedding. Anal Chim Acta 879:10–23

    Article  CAS  PubMed  Google Scholar 

  82. Mutihac L, Mutihac R (2008) Mining in chemometrics. Anal Chim Acta 612(1):1–18

    Article  CAS  PubMed  Google Scholar 

  83. Sumner LW, Mendes P, Dixon RA (2003) Plant metabolomics: large-scale phytochemistry in the functional genomics era. Phytochemistry 62(6):817–836

    Article  CAS  PubMed  Google Scholar 

  84. Wishart DS (2008) Quantitative metabolomics using NMR. TrAC Trends Anal Chem 27(3):228–237

    Article  CAS  Google Scholar 

  85. Worley B, Powers R (2016) PCA as a practical indicator of OPLS-DA model reliability. Curr Metabolomics 4(2):97–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Selegato DM, Freire RT, Tannús A, Castro-Gamboa I (2016) New Dereplication method applied to NMR-based metabolomics on different Fusarium species isolated from rhizosphere of Senna spectabilis. J Braz Chem Soc 27:1421–1431

    CAS  Google Scholar 

  87. Kumar N, Bansal A, Sarma GS, Rawal RK (2014) Chemometrics tools used in analytical chemistry: an overview. Talanta 123:186–199

    Article  CAS  PubMed  Google Scholar 

  88. Bevilacqua M, Bro R (2020) Can we trust score plots? Meta 10(7)

    Google Scholar 

  89. Westerhuis JA, Hoefsloot HCJ, Smit S, Vis DJ, Smilde AK, van Velzen EJJ, van Duijnhoven JPM, van Dorsten FA (2008) Assessment of PLSDA cross validation. Metabolomics 4(1):81–89

    Article  CAS  Google Scholar 

  90. Ghosh T, Zhang W, Ghosh D, Kechris K (2020) Predictive modeling for metabolomics data. Methods Mol Biol 2104:313–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Skinner SP, Fogh RH, Boucher W, Ragan TJ, Mureddu LG, Vuister GW (2016) CcpNmr AnalysisAssign: a flexible platform for integrated NMR analysis. J Biomol NMR 66(2):111–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Maciejewski MW, Schuyler AD, Gryk MR, Moraru PR II, Romero EL, Ulrich HR, Eghbalnia M, Livny FD, Hoch JC (2017) NMRbox: a resource for biomolecular NMR computation. Biophys J 112(8):1529–1534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Worley B, Powers R (2014) MVAPACK: a complete data handling package for NMR metabolomics. ACS Chem Biol 9(5):1138–1144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wishart DS, Tzur D, Knox C, Eisner R, Guo AC, Young N, Cheng D, Jewell K, Arndt D, Sawhney S, Fung C, Nikolai L, Lewis M, Coutouly MA, Forsythe I, Tang P, Shrivastava S, Jeroncic K, Stothard P, Amegbey G, Block D, Hau DD, Wagner J, Miniaci J, Clements M, Gebremedhin M, Guo N, Zhang Y, Duggan GE, Macinnis GD, Weljie AM, Dowlatabadi R, Bamforth F, Clive D, Greiner R, Li L, Marrie T, Sykes BD, Vogel HJ, Querengesser L (2007) HMDB: the human metabolome database. Nucleic Acids Res 35(Database issue):D521–D526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Sajed T, Marcu A, Ramirez M, Pon A, Guo AC, Knox C, Wilson M, Grant JR, Djoumbou Y, Wishart DS (2016) ECMDB 2.0: a richer resource for understanding the biochemistry of E. coli. Nucleic Acids Res 44(D1):D495–D501

    Article  CAS  PubMed  Google Scholar 

  96. Reher R, Kim HW, Zhang C, Mao HH, Wang M, Nothias LF, Caraballo-Rodriguez AM, Glukhov E, Teke B, Leao T, Alexander KL, Duggan BM, Van Everbroeck EL, Dorrestein PC, Cottrell GW, Gerwick WH (2020) A convolutional neural network-based approach for the rapid annotation of molecularly diverse natural products. J Am Chem Soc 142(9):4114–4120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Egan JM, van Santen JA, Liu DY, Linington RG (2021) Development of an NMR-based platform for the direct structural annotation of complex natural products mixtures. J Nat Prod 84(4):1044–1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wishart, D. S., Z. Sayeeda, Z. Budinski, A. Guo, B. L. Lee, M. Berjanskii, M. Rout, H. Peters, R. Dizon, R. Mah, C. Torres-Calzada, M. Hiebert-Giesbrecht, D. Varshavi, D. Varshavi, E. Oler, D. Allen, X. Cao, V. Gautam, A. Maras, Ella F. Poynton, P. Tavangar, V. Yang, Jeffrey A. van Santen, R. Ghosh, S. Sarma, E. Knutson, V. Sullivan, Amy M. Jystad, R. Renslow, Lloyd W. Sumner, Roger G. Linington and John R. Cort (2021). "NP-MRD: the natural products magnetic resonance database." Nucleic Acids Res

    Google Scholar 

  99. Mielko KA, Jabłoński SJ, Wojtowicz W, Milczewska J, Sands D, Łukaszewicz M, Młynarz P (2020) Possible metabolic switch between environmental and pathogenic Pseudomonas aeruginosa strains: 1H NMR based metabolomics study. J Pharm Biomed Anal 188:113369

    Article  CAS  PubMed  Google Scholar 

  100. Borchert AJ, Gouveia GJ, Edison AS, Downs DM (2020) Proton nuclear magnetic resonance metabolomics corroborates serine Hydroxymethyltransferase as the primary target of 2-Aminoacrylate in a ridA mutant of salmonella enterica. mSystems 5(2):10–1128

    Article  Google Scholar 

  101. Marshall DD, Halouska S, Zinniel DK, Fenton RJ, Kenealy K, Chahal HK, Rathnaiah G, Barletta RG, Powers R (2017) Assessment of metabolic changes in mycobacterium smegmatis wild-type and alr mutant strains: evidence of a new pathway of d-alanine biosynthesis. J Proteome Res 16(3):1270–1279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Betancur LA, Forero AM, Vinchira-Villarraga DM, Cardenas JD, Romero-Otero A, Chagas FO, Pupo MT, Castellanos L, Ramos FA (2020) NMR-based metabolic profiling to follow the production of anti-phytopathogenic compounds in the culture of the marine strain Streptomyces sp. PNM-9. Microbiol Res 239:126507

    Article  CAS  PubMed  Google Scholar 

  103. Carvalho FV, Fonseca Santana L, Diogenes A d SV, Costa SL, Zambotti-Villelae L, Colepicolo P, Ferraz CG, Ribeiro PR (2021) Combination of a multiplatform metabolite profiling approach and chemometrics as a powerful strategy to identify bioactive metabolites in Lepidium meyenii (Peruvian maca). Food Chem 364:130453

    Article  CAS  PubMed  Google Scholar 

  104. Kellogg JJ, Cech NB (2020) Uncovering bioactive natural products via biochemometric methodologies. In: Comprehensive natural products III, pp 271–279

    Chapter  Google Scholar 

  105. Ory L, Nazih EH, Daoud S, Mocquard J, Bourjot M, Margueritte L, Delsuc MA, Bard JM, Pouchus YF, Bertrand S, Roullier C (2019) Targeting bioactive compounds in natural extracts - development of a comprehensive workflow combining chemical and biological data. Anal Chim Acta 1070:29–42

    Article  CAS  PubMed  Google Scholar 

  106. Wen C, Wang D, Li X, Huang T, Huang C, Hu K (2018) Targeted isolation and identification of bioactive compounds lowering cholesterol in the crude extracts of crabapples using UPLC-DAD-MS-SPE/NMR based on pharmacology-guided PLS-DA. J Pharm Biomed Anal 150:144–151

    Article  CAS  PubMed  Google Scholar 

  107. Liu M, Grkovic T, Liu X, Han J, Zhang L, Quinn RJ (2017a) A systems approach using OSMAC, Log P and NMR fingerprinting: an approach to novelty. Synth Syst Biotechnol 2(4):276–286

    Article  PubMed  PubMed Central  Google Scholar 

  108. Fernand MG, Roullier C, Guitton Y, Lalande J, Lacoste S, Dupont J, Ruiz N, Pouchus YF, Raheriniaina C, Ranaivoson E (2017) Fungi isolated from Madagascar shrimps - investigation of the aspergillus Niger metabolism by combined LC-MS and NMR metabolomics studies. Aquaculture 479:750–758

    Article  CAS  Google Scholar 

  109. Chen L, Zhao X, Wu J, Liu Q, Pang X, Yang H (2020) Metabolic characterisation of eight Escherichia coli strains including “Big Six” and acidic responses of selected strains revealed by NMR spectroscopy. Food Microbiol 88:103399

    Article  CAS  PubMed  Google Scholar 

  110. Aries ML, Cloninger MJ (2020) NMR metabolomic analysis of bacterial resistance pathways using multivalent quaternary ammonium functionalized macromolecules. Metabolomics 16(8):82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Liu Q, Wu JE, Lim ZY, Aggarwal A, Yang H, Wang S (2017b) Evaluation of the metabolic response of Escherichia coli to electrolysed water by 1 H NMR spectroscopy. LWT Food Sci Technol 79:428–436

    Article  CAS  Google Scholar 

  112. Rona GB, Almeida NP, Santos GC Jr, Fidalgo TK, Almeida FC, Eleutherio EC, Pinheiro AS (2019) (1) H NMR metabolomics reveals increased glutaminolysis upon overexpression of NSD3s or Pdp3 in Saccharomyces cerevisiae. J Cell Biochem 120(4):5377–5385

    Article  CAS  PubMed  Google Scholar 

  113. Imai A, Lankin DC, Godecke T, Chen SN, Pauli GF (2020) Differentiation of Actaea species by NMR metabolomics analysis. Fitoterapia 146:104686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kroymann J (2011) Natural diversity and adaptation in plant secondary metabolism. Curr Opin Plant Biol 14(3):246–251

    Article  CAS  PubMed  Google Scholar 

  115. Leiss KA, Choi YH, Verpoorte R, Klinkhamer PG (2011) An overview of NMR-based metabolomics to identify secondary plant compounds involved in host plant resistance. Phytochem Rev 10(2):205–216

    Article  CAS  PubMed  Google Scholar 

  116. Nephali L, Piater LA, Dubery IA, Patterson V, Huyser J, Burgess K, Tugizimana F (2020) Biostimulants for plant growth and mitigation of abiotic stresses: a metabolomics perspective. Meta 10(12)

    Google Scholar 

  117. Schauer N, Fernie AR (2006) Plant metabolomics: towards biological function and mechanism. Trends Plant Sci 11(10):508–516

    Article  CAS  PubMed  Google Scholar 

  118. Zulak KG, Weljie AM, Vogel HJ, Facchini PJ (2008) Quantitative 1H NMR metabolomics reveals extensive metabolic reprogramming of primary and secondary metabolism in elicitor-treated opium poppy cell cultures. BMC Plant Biol 8:5

    Article  PubMed  PubMed Central  Google Scholar 

  119. Shaver AO, Gouveia GJ, Kirby PS, Andersen EC, Edison AS (2021) Culture and assay of large-scale mixed-stage Caenorhabditis elegans populations. JoVE 171:e61453

    Google Scholar 

  120. Polozsányi Z, Kaliňák M, Babjak M, Šimkovič M, Varečka Ľ (2021) How to enter the state of dormancy? A suggestion by Trichoderma atroviride conidia. Fungal Biol 125(11):934–949

    Article  PubMed  Google Scholar 

  121. Judge MT, Wu Y, Tayyari F, Hattori A, Glushka J, Ito T, Arnold J, Edison AS (2019) Continuous in vivo metabolism by NMR. Front Mol Biosci 6:26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Koczula KM, Ludwig C, Hayden R, Cronin L, Pratt G, Parry H, Tennant D, Drayson M, Bunce CM, Khanim FL, Gunther UL (2016) Metabolic plasticity in CLL: adaptation to the hypoxic niche. Leukemia 30(1):65–73

    Article  CAS  PubMed  Google Scholar 

  123. Dalisay DS, Rogers EW, Edison AS, Molinski TF (2009) Structure elucidation at the nanomole scale. 1. Trisoxazole macrolides and thiazole-containing cyclic peptides from the nudibranch Hexabranchus sanguineus. J Nat Prod 72(4):732–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Pintér G, Schwalbe H (2017) Unprecedented carbon signal enhancement in liquid-state NMR spectroscopy. Angew Chem Int Ed 56(29):8332–8334

    Article  Google Scholar 

  125. Delaglio F, Walker GS, Farley KA, Sharma R, Hoch JC, Arbogast LW, Brinson RG, Marino JP (2017) Non-uniform sampling for all: more NMR spectral quality, less measurement time <non-uniform sampling for all more NMR spectral quality, less measurement time.pdf>. Am Pharm Rev 20(4):1–12

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Borges, R.M., Gouveia, G.J., das Chagas, F.O. (2023). Advances in Microbial NMR Metabolomics. In: Pacheco Fill, T. (eds) Microbial Natural Products Chemistry. Advances in Experimental Medicine and Biology(), vol 1439. Springer, Cham. https://doi.org/10.1007/978-3-031-41741-2_6

Download citation

Publish with us

Policies and ethics