Skip to main content

Metabolomics Applied to Cyanobacterial Toxins and Natural Products

  • Chapter
  • First Online:
Microbial Natural Products Chemistry

Abstract

The biological and chemical diversity of Cyanobacteria is remarkable. These ancient prokaryotes are widespread in nature and can be found in virtually every habitat on Earth where there is light and water. They are producers of an array of secondary metabolites with important ecological roles, toxic effects, and biotechnological applications. The investigation of cyanobacterial metabolites has benefited from advances in analytical tools and bioinformatics that are employed in metabolomic analyses. In this chapter, we review selected articles highlighting the use of targeted and untargeted metabolomics in the analyses of secondary metabolites produced by cyanobacteria. Here, cyanobacterial secondary metabolites have been didactically divided into toxins and natural products according to their relevance to toxicological studies and drug discovery, respectively. This review illustrates how metabolomics has improved the chemical analysis of cyanobacteria in terms of speed, sensitivity, selectivity, and/or coverage, allowing for broader and more complex scientific questions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vidal L, Ballot A, Azevedo SMFO, Padisák J, Welker M (2021) Introduction to cyanobacteria. In: Chorus I, Welker M (eds) Toxic cyanobacteria in water, 2nd edn. Taylor & Francis, Oxon, pp 163–211

    Chapter  Google Scholar 

  2. Komárek J, Kaštovský J, Mareš J, Johansen JR (2014) Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia 86(4):295–335

    Google Scholar 

  3. Nabout JC, da Silva Rocha B, Carneiro FM, Sant’Anna CL (2013) How many species of cyanobacteria are there? Using a discovery curve to predict the species number. Biodivers Conserv 22(12):2907–2918. https://doi.org/10.1007/s10531-013-0561-x

    Article  Google Scholar 

  4. Schopf JW (2006) Fossil evidence of Archaean life. Philos Trans R Soc B Biol Sci 361(1470):869–885. https://doi.org/10.1098/rstb.2006.1834

    Article  CAS  Google Scholar 

  5. Altermann W, Kazmierczak J (2003) Archean microfossils: a reappraisal of early life on Earth. Res Microbiol 154(9):611–617. https://doi.org/10.1016/j.resmic.2003.08.006

    Article  PubMed  Google Scholar 

  6. Schirrmeister BE, de Vos JM, Antonelli A, Bagheri HC (2013) Evolution of multicellularity coincided with increased diversification of cyanobacteria and the great oxidation event. Proc Natl Acad Sci 110(5):1791–1796. https://doi.org/10.1073/pnas.1209927110

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sanchez-Baracaldo P, Hayes PK, Blank CE (2005) Morphological and habitat evolution in the cyanobacteria using a compartmentalization approach. Geobiology 3(3):145–165. https://doi.org/10.1111/j.1472-4669.2005.00050.x

    Article  CAS  Google Scholar 

  8. Adams DG, Duggan PS, Jackson O (2012) Cyanobacterial symbioses. In: Ecology of cyanobacteria II. Springer, pp 593–647

    Chapter  Google Scholar 

  9. Jones MR, Pinto E, Torres MA, Dörr F, Mazur-Marzec H, Szubert K et al (2021) CyanoMetDB, a comprehensive public database of secondary metabolites from cyanobacteria. Water Res 196:117017. https://doi.org/10.1016/j.watres.2021.117017

    Article  CAS  PubMed  Google Scholar 

  10. Leão PN, Engene N, Antunes A, Gerwick WH, Vasconcelos V (2012) The chemical ecology of cyanobacteria. Nat Prod Rep 29(3):372–391. https://doi.org/10.1039/c2np00075j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tidgewell K, Clark BR, Gerwick WH (2010) The natural products chemistry of cyanobacteria. In: Liu H-W (Ben), Mander L (eds) Comprehensive natural products II. Elsevier, Oxford, pp 141–188

    Chapter  Google Scholar 

  12. Francis G (1878) Poisonous Australian lake. Nature 18(444):11–12. https://doi.org/10.1038/018011d0

    Article  Google Scholar 

  13. Paerl HW, Otten TG (2013) Blooms bite the hand that feeds them. Science (80-) 342(6157):433–434. https://doi.org/10.1126/science.1245276

    Article  CAS  Google Scholar 

  14. Buratti FM, Manganelli M, Vichi S, Stefanelli M, Scardala S, Testai E et al (2017) Cyanotoxins: producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation. Arch Toxicol 91(3):1049–1130. https://doi.org/10.1007/s00204-016-1913-6

    Article  CAS  PubMed  Google Scholar 

  15. Chorus I, Welker M (2021) Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. CRC Press

    Book  Google Scholar 

  16. Hilborn ED, Roberts VA, Backer L, DeConno E, Egan JS, Hyde JB et al (2014) Algal bloom-associated disease outbreaks among users of freshwater lakes: United States, 2009-2010. Morb Mortal Wkly Rep 63(1):145–156

    Google Scholar 

  17. Chorus I, Ian R, Falconer H (2000) Health risks caused by freshwater cyanobacteria in recreational waters. J Toxicol Environ Health Part B 3(4):323–347. https://doi.org/10.1080/109374000436364

    Article  CAS  Google Scholar 

  18. Kaebernick M (2001) Ecological and molecular investigations of cyanotoxin production. FEMS Microbiol Ecol 35(1):1–9. https://doi.org/10.1016/S0168-6496(00)00093-3

    Article  CAS  PubMed  Google Scholar 

  19. Falconer IR (1994) Health implications of cyanobacterial (blue-green algae) toxins. In: Toxic cyanobacteria current status of research and management-proceedings of an international workshop. Adelaide

    Google Scholar 

  20. Meiβner K (1996) Toxic and non-toxic strains of the cyanobacterium Microcystis aeruginosa contain sequences homologous to peptide synthetase genes. FEMS Microbiol Lett 135(2–3):295–303. https://doi.org/10.1016/0378-1097(95)00469-6

    Article  Google Scholar 

  21. Janssen EML (2019) Cyanobacterial peptides beyond microcystins – a review on co-occurrence, toxicity, and challenges for risk assessment. Water Res 151:488–499. https://doi.org/10.1016/j.watres.2018.12.048

    Article  CAS  PubMed  Google Scholar 

  22. Demay J, Bernard C, Reinhardt A, Marie B (2019) Natural products from cyanobacteria: focus on beneficial activities. Mar Drugs 17(6):320. https://doi.org/10.3390/md17060320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Le Manach S, Duval C, Marie A, Djediat C, Catherine A, Edery M et al (2019) Global metabolomic characterizations of Microcystis spp. highlights clonal diversity in natural bloom-forming populations and expands metabolite structural diversity. Front Microbiol 10(Mar):1–16. https://doi.org/10.3389/fmicb.2019.00791

    Article  Google Scholar 

  24. Huang I-S, Zimba PV (2019) Cyanobacterial bioactive metabolites – a review of their chemistry and biology. Harmful Algae 83(June 2018):42–94. https://doi.org/10.1016/j.hal.2018.11.008

    Article  CAS  PubMed  Google Scholar 

  25. Atanasov AG, Zotchev SB, Dirsch VM, Supuran CT (2021) Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discov 20(3):200–216. https://doi.org/10.1038/s41573-020-00114-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pye CR, Bertin MJ, Lokey RS, Gerwick WH, Linington RG (2017) Retrospective analysis of natural products provides insights for future discovery trends. Proc Natl Acad Sci U S A 114(22):5601–5606. https://doi.org/10.1073/pnas.1614680114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Salvador-Reyes LA, Luesch H (2015) Biological targets and mechanisms of action of natural products from marine cyanobacteria. Nat Prod Rep 32(3):478–503. https://doi.org/10.1039/C4NP00104D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chlipala GE, Mo S, Orjala J (2011) Chemodiversity in freshwater and terrestrial cyanobacteria – a source for drug discovery. Curr Drug Targets 12(11):1654–1673. https://doi.org/10.2174/138945011798109455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Luesch H, Moore RE, Paul VJ, Mooberry SL, Corbett TH (2001) Isolation of dolastatin 10 from the marine cyanobacterium Symploca species VP642 and total stereochemistry and biological evaluation of its analogue symplostatin 1. J Nat Prod 64(7):907–910. https://doi.org/10.1021/np010049y

    Article  CAS  PubMed  Google Scholar 

  30. Doronina SO, Toki BE, Torgov MY, Mendelsohn BA, Cerveny CG, Chace DF et al (2003) Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat Biotechnol 21(7):778–784. https://doi.org/10.1038/nbt832

    Article  CAS  PubMed  Google Scholar 

  31. Senter PD, Sievers EL (2012) The discovery and development of brentuximab vedotin for use in relapsed Hodgkin lymphoma and systemic anaplastic large cell lymphoma. Nat Biotechnol 30(7):631–637. https://doi.org/10.1038/nbt.2289

    Article  CAS  PubMed  Google Scholar 

  32. Richardson NC, Kasamon YL, Chen H, de Claro RA, Ye J, Blumenthal GM et al (2019) FDA approval summary: brentuximab vedotin in first-line treatment of peripheral T-cell lymphoma. Oncologist 24(5):e180–e187. https://doi.org/10.1634/theoncologist.2019-0098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bortoli S, Pinto E (2015) Cianotoxinas: Características Gerais, Histórico, Legislação E Métodos De Análises. In: Ecologia de reservatórios e interfaces. Instituto de Biociências da Universidade de São Paulo, pp 163–164

    Google Scholar 

  34. Huisman J, Codd GA, Paerl HW, Ibelings BW, Verspagen JMH, Visser PM (2018) Cyanobacterial blooms. Nat Rev Microbiol 16(8):471–483. https://doi.org/10.1038/s41579-018-0040-1

    Article  CAS  PubMed  Google Scholar 

  35. Paerl HW, Huisman J (2008) Climate: blooms like it hot. Science 320(5872):57–58. https://doi.org/10.1126/science.1155398

    Article  CAS  PubMed  Google Scholar 

  36. Brunton C, Butler K, Collier M, Hamann J, Lilienfeld-jones J, Otness P et al (2021) EPA needs an agencywide strategic action plan to address harmful algal blooms. Washington, DC

    Google Scholar 

  37. Scheffer M, Hosper SH, Meijer M-L, Moss B, Jeppesen E (1993) Alternative equilibria in shallow lakes. Trends Ecol Evol 8(8):275–279. https://doi.org/10.1007/978-3-642-41714-6_192672

    Article  CAS  PubMed  Google Scholar 

  38. Rabalais NN, Díaz RJ, Levin LA, Turner RE, Gilbert D, Zhang J (2010) Dynamics and distribution of natural and human-caused hypoxia. Biogeosciences 7(2):585–619. https://doi.org/10.5194/bg-7-585-2010

    Article  CAS  Google Scholar 

  39. Jüttner F, Watson SB (2007) Biochemical and ecological control of geosmin and 2-methylisoborneol in source waters. Appl Environ Microbiol 73(14):4395–4406. https://doi.org/10.1128/AEM.02250-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Du X, Liu H, Yuan L, Wang Y, Ma Y, Wang R et al (2019) The diversity of cyanobacterial toxins on structural characterization, distribution and identification: a systematic review. Toxins (Basel) 11(9):1–34. https://doi.org/10.3390/toxins11090530

    Article  CAS  Google Scholar 

  41. Merel S, Walker D, Chicana R, Snyder S, Baurès E, Thomas O (2013) State of knowledge and concerns on cyanobacterial blooms and cyanotoxins. Environ Int 59:303–327. https://doi.org/10.1016/j.envint.2013.06.013

    Article  CAS  PubMed  Google Scholar 

  42. Chernoff N, Faassen EJ, Hill DJ (2021) 2.7. 1 discrepancies introduced by incorrect BMAA analysis. In: Chorus I, Welker M (eds) Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. CRC Press, Boca Raton, pp 123–125

    Google Scholar 

  43. Bishop CT, Anet EFLJ, Gorham PR (1959) Isolation and identification of the fast-death factor in Microcystis aeruginosa NRC-1. Can J Biochem Physiol 37(1):453–471. https://doi.org/10.1139/y59-047

    Article  CAS  PubMed  Google Scholar 

  44. Martins JC, Vasconcelos VM (2009) Microcystin dynamics in aquatic organisms. J Toxicol Environ Health Part B 12(1):65–82. https://doi.org/10.1080/10937400802545151

    Article  CAS  Google Scholar 

  45. Sivonen K, Jones GJ (1999) Cyanobacterial toxins. In: Chorus I, Bartram J (eds) Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. E & FN Spon, London, pp 41–91

    Google Scholar 

  46. Rinehart KL, Harada K, Namikoshi M, Chen C, Harvis CA, Munro MHG et al (1988) Nodularin, microcystin, and the configuration of Adda. J Am Chem Soc 110(25):8557–8558. https://doi.org/10.1021/ja00233a049

    Article  CAS  Google Scholar 

  47. Tillett D, Dittmann E, Erhard M, von Döhren H, Börner T, Neilan BA (2000) Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806: an integrated peptide–polyketide synthetase system. Chem Biol 7(10):753–764. https://doi.org/10.1016/S1074-5521(00)00021-1

    Article  CAS  PubMed  Google Scholar 

  48. Fastner J, Humpage AR (2021) Hepatotoxic cyclic peptides – microcystins and nodularins. In: Toxic cyanobacteria in water, 2nd edn. CRC Press, Boca Raton, pp 21–52

    Google Scholar 

  49. Msagati TAM, Siame BA, Shushu DD (2006) Evaluation of methods for the isolation, detection and quantification of cyanobacterial hepatotoxins. Aquat Toxicol 78(4):382–397

    Article  CAS  PubMed  Google Scholar 

  50. Harada K, Tsuji K, Watanabe MF, Kondo F (1996) Stability of microcystins from cyanobacteria – III. Effect of pH and temperature. Phycologia 35(sup6):83–88

    Article  Google Scholar 

  51. Funari E, Testai E (2008) Human health risk assessment related to cyanotoxins exposure. Crit Rev Toxicol 38(2):97–125

    Article  CAS  PubMed  Google Scholar 

  52. Codd GA, Meriluoto J, Metcalf JS (2016) Introduction: cyanobacteria, cyanotoxins, their human impact, and risk management. In: Handbook of cyanobacterial monitoring and cyanotoxin analysis. Wiley, pp 1–8

    Google Scholar 

  53. Ji Y, Lu G, Chen G, Huang B, Zhang X, Shen K et al (2011) Microcystin-LR induces apoptosis via NF-κB/iNOS pathway in INS-1 cells. Int J Mol Sci 12(7):4722–4734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. McLellan NL, Manderville RA (2017) Toxic mechanisms of microcystins in mammals. Toxicol Res (Camb) 6(4):391–405

    Article  CAS  PubMed  Google Scholar 

  55. Ohtani I, Moore RE, Runnegar MTC (1992) Cylindrospermopsin: a potent hepatotoxin from the blue-green alga Cylindrospermopsis raciborskii. J Am Chem Soc 114(20):7941–7942

    Article  CAS  Google Scholar 

  56. Mihali TK, Kellmann R, Muenchhoff J, Barrow KD, Neilan BA (2008) Characterization of the gene cluster responsible for cylindrospermopsin biosynthesis. Appl Environ Microbiol 74(3):716–722. https://doi.org/10.1128/AEM.01988-07

    Article  CAS  PubMed  Google Scholar 

  57. Mazmouz R, Chapuis-Hugon F, Mann S, Pichon V, Méjean A, Ploux O (2010) Biosynthesis of cylindrospermopsin and 7-epicylindrospermopsin in Oscillatoria sp. strain PCC 6506: identification of the cyr gene cluster and toxin analysis. Appl Environ Microbiol 76(15):4943–4949. https://doi.org/10.1128/AEM.00717-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Spoof L, Berg KA, Rapala J, Lahti K, Lepistö L, Metcalf JS et al (2006) First observation of cylindrospermopsin in Anabaena lapponica isolated from the boreal environment (Finland). Environ Toxicol 21(6):552–560. https://doi.org/10.1002/tox.20216

    Article  CAS  PubMed  Google Scholar 

  59. Stirling DJ, Quilliam MA (2001) First report of the cyanobacterial toxin cylindrospermopsin in New Zealand. Toxicon 39(8):1219–1222. https://doi.org/10.1016/S0041-0101(00)00266-X

    Article  CAS  PubMed  Google Scholar 

  60. Harada K, Ohtani I, Iwamoto K, Suzuki M, Watanabe MF, Watanabe M et al (1994) Isolation of cylindrospermopsin from a cyanobacterium Umezakia natans and its screening method. Toxicon 32(1):73–84. https://doi.org/10.1016/0041-0101(94)90023-X

    Article  CAS  PubMed  Google Scholar 

  61. Kokociński M, Mankiewicz-Boczek J, Jurczak T, Spoof L, Meriluoto J, Rejmonczyk E et al (2013) Aphanizomenon gracile (Nostocales), a cylindrospermopsin-producing cyanobacterium in Polish lakes. Environ Sci Pollut Res 20(8):5243–5264

    Article  Google Scholar 

  62. Seifert M, McGregor G, Eaglesham G, Wickramasinghe W, Shaw G (2007) First evidence for the production of cylindrospermopsin and deoxy-cylindrospermopsin by the freshwater benthic cyanobacterium, Lyngbya wollei (Farlow ex Gomont) Speziale and Dyck. Harmful Algae 6(1):73–80

    Article  CAS  Google Scholar 

  63. Preußel K, Stüken A, Wiedner C, Chorus I, Fastner J (2006) First report on cylindrospermopsin producing Aphanizomenon flos-aquae (Cyanobacteria) isolated from two German lakes. Toxicon 47(2):156–162

    Article  PubMed  Google Scholar 

  64. Fastner J, Rücker J, Stüken A, Preußel K, Nixdorf B, Chorus I et al (2007) Occurrence of the cyanobacterial toxin cylindrospermopsin in northeast Germany. Environ Toxicol An Int J 22(1):26–32

    Article  CAS  Google Scholar 

  65. Detoni AMS, Costa LDF, Pacheco LA, Yunes JS (2016) Toxic Trichodesmium bloom occurrence in the southwestern South Atlantic Ocean. Toxicon 110:51–55

    Article  Google Scholar 

  66. Senogles P, Shaw G, Smith M, Norris R, Chiswell R, Mueller J et al (2000) Degradation of the cyanobacterial toxin cylindrospermopsin, from Cylindrospermopsis raciborskii, by chlorination. Toxicon 38(9):1203–1213

    Article  CAS  PubMed  Google Scholar 

  67. Chiswell RK, Shaw GR, Eaglesham G, Smith MJ, Norris RL, Seawright AA et al (1999) Stability of cylindrospermopsin, the toxin from the cyanobacterium, Cylindrospermopsis raciborskii: effect of pH, temperature, and sunlight on decomposition. Environ Toxicol An Int J 14(1):155–161

    Article  CAS  Google Scholar 

  68. Froscio SM, Fanok S, Humpage AR (2009) Cytotoxicity screening for the cyanobacterial toxin cylindrospermopsin. J Toxicol Environ Health Part A 72(5):345–349

    Article  CAS  Google Scholar 

  69. Jacinavicius FR, Carneiro, Ronaldo Leal Sant’Anna CL, Rigonato J, Carvalho LR (2016) Phenotypic plasticity and negative allelopathy in Microcystis strains. Ann Microbiol 66(3):1265–1276. https://doi.org/10.1007/s13213-016-1215-5

    Article  Google Scholar 

  70. Gorham PR (1964) Toxic algae as a public health hazard. J Am Water Works Assoc 56(11):1481–1488

    Article  Google Scholar 

  71. Devlin JP, Edwards OE, Gorham PR, Hunter NR, Pike RK, Stavric B (1977) Anatoxin-a, a toxic alkaloid from Anabaena flos-aquae NRC-44h. Can J Chem 55(8):1367–1371

    Article  CAS  Google Scholar 

  72. Kust A, Méjean A, Ploux O (2020) Biosynthesis of anatoxins in cyanobacteria: identification of the carboxy-anatoxins as the penultimate biosynthetic intermediates. J Nat Prod 83(1):142–151. https://doi.org/10.1021/acs.jnatprod.9b01121

    Article  CAS  PubMed  Google Scholar 

  73. Méjean A, Mann S, Maldiney T, Vassiliadis G, Lequin O, Ploux O (2009) Evidence that biosynthesis of the neurotoxic alkaloids anatoxin-a and homoanatoxin-a in the cyanobacterium Oscillatoria PCC 6506 occurs on a modular polyketide synthase initiated by l-proline. J Am Chem Soc 131(22):7512–7513. https://doi.org/10.1021/ja9024353

    Article  CAS  PubMed  Google Scholar 

  74. Méjean A, Paci G, Gautier V, Ploux O (2014) Biosynthesis of anatoxin-a and analogues (anatoxins) in cyanobacteria. Toxicon 91:15–22

    Article  PubMed  Google Scholar 

  75. Hodoki Y, Ohbayashi K, Kobayashi Y, Takasu H, Okuda N, Nakano S (2013) Anatoxin-a-producing Raphidiopsis mediterranea Skuja var. grandis Hill is one ecotype of non-heterocytous Cuspidothrix issatschenkoi (Usačev) Rajaniemi et al. in Japanese lakes. Harmful Algae 21–22:44–53. https://doi.org/10.1016/j.hal.2012.11.007

    Article  CAS  Google Scholar 

  76. Wood SA, Puddick J, Fleming R, Heussner AH (2017) Detection of anatoxin-producing Phormidium in a New Zealand farm pond and an associated dog death. New Zeal J Bot 55(1):36–46. https://doi.org/10.1080/0028825X.2016.1231122

    Article  Google Scholar 

  77. Sivonen K, Himberg K, Luukkainen R, Niemelä SI, Poon GK, Codd GA (1989) Preliminary characterization of neurotoxic cyanobacteria blooms and strains from Finland. Toxic Assess 4(3):339–352. https://doi.org/10.1002/tox.2540040310

    Article  CAS  Google Scholar 

  78. Osswald J, Rellán S, Gago A, Vasconcelos V (2007) Toxicology and detection methods of the alkaloid neurotoxin produced by cyanobacteria, anatoxin-a. Environ Int 33(8):1070–1089. https://doi.org/10.1016/j.envint.2007.06.003

    Article  CAS  PubMed  Google Scholar 

  79. Kaminski A, Bober B, Lechowski Z, Bialczyk J (2013) Determination of anatoxin-a stability under certain abiotic factors. Harmful Algae 28:83–87. https://doi.org/10.1016/j.hal.2013.05.014

    Article  CAS  Google Scholar 

  80. Rapala J, Sivonen K, Luukkainen R, Niemelä SI (1993) Anatoxin-a concentration in Anabaena and Aphanizomenon under different environmental conditions and comparison of growth by toxic and non-toxic Anabaena-strains – a laboratory study. J Appl Phycol 5(6):581–591. https://doi.org/10.1007/BF02184637

    Article  CAS  Google Scholar 

  81. Thomas P, Stephens M, Wilkie G, Amar M, Lunt GG, Whiting P et al (1993) (+)-Anatoxin-a is a potent agonist at neuronal nicotinic acetylcholine receptors. J Neurochem 60(6):2308–2311. https://doi.org/10.1111/j.1471-4159.1993.tb03519.x

    Article  CAS  PubMed  Google Scholar 

  82. Aráoz R, Molgó J, Tandeau de Marsac N (2010) Neurotoxic cyanobacterial toxins. Toxicon 56(5):813–828. https://doi.org/10.1016/j.toxicon.2009.07.036

    Article  CAS  PubMed  Google Scholar 

  83. Mahmood NA, Carmichael WW (1987) Anatoxin-a(s), an anticholinesterase from the cyanobacterium Anabaena flos-aquae NRC-525-17. Toxicon 25(11):1221–1227. https://doi.org/10.1016/0041-0101(87)90140-1

    Article  CAS  PubMed  Google Scholar 

  84. Fiore MF, de Lima ST, Carmichael WW, McKinnie SMK, Chekan JR, Moore BS (2020) Guanitoxin, re-naming a cyanobacterial organophosphate toxin. Harmful Algae 92:101737. https://doi.org/10.1016/j.hal.2019.101737

    Article  PubMed  Google Scholar 

  85. Matsunaga S, Moore RE, Niemczura WP, Carmichael WW (1989) Anatoxin-a(s), a potent anticholinesterase from Anabaena flos-aquae. J Am Chem Soc 111(20):8021–8023. https://doi.org/10.1021/ja00202a057

    Article  CAS  Google Scholar 

  86. Moura S, Pinto E (2010) Synthesis of cyclic guanidine intermediates of anatoxin-a(s) in both racemic and enantiomerically pure forms. Synlett 06:967–969

    Google Scholar 

  87. Moore BS, Ohtani I, de Koning CB, Moore RE, Carmichael WW (1992) Biosynthesis of anatoxin-a(s). Origin of the carbons. Tetrahedron Lett 33(44):6595–6598. https://doi.org/10.1016/S0040-4039(00)60994-2

    Article  CAS  Google Scholar 

  88. Dörr FA, Rodríguez V, Molica R, Henriksen P, Krock B, Pinto E (2010) Methods for detection of anatoxin-a(s) by liquid chromatography coupled to electrospray ionization-tandem mass spectrometry. Toxicon 55(1):92–99. https://doi.org/10.1016/j.toxicon.2009.07.017

    Article  CAS  PubMed  Google Scholar 

  89. Testai E (2021) 2.5 anatoxin-a(s). In: Bartram J, Chorus I (eds) Toxic cyanobacteria in water, 2nd edn. Taylor & Francis, Boca Raton, p 109

    Google Scholar 

  90. Carmichael WW, Gorham PR (1978) Anatoxins from clones of Anabaena flos-aquae isolated from lakes of western Canada. SIL Commun 1953–1996 21(1):285–295. https://doi.org/10.1080/05384680.1978.11903972

    Article  CAS  Google Scholar 

  91. Molica RJR, Oliveira EJA, Carvalho PVVC, Costa ANSF, Cunha MCC, Melo GL et al (2005) Occurrence of saxitoxins and an anatoxin-a(s)-like anticholinesterase in a Brazilian drinking water supply. Harmful Algae 4(4):743–753. https://doi.org/10.1016/j.hal.2004.11.001

    Article  CAS  Google Scholar 

  92. Fernandes K, Dörr FA, Pinto E (2021) Stability analyses by HPLC-MS of guanitoxin isolated from Sphaerospermopsis torques-reginae. J Braz Chem Soc 32:1559–1567. https://doi.org/10.21577/0103-5053.20210053

    Article  CAS  Google Scholar 

  93. Thottumkara AP, Parsons WH, Du Bois J (2014) Saxitoxin. Angew Chem Int Ed 53(23):5760–5784. https://doi.org/10.1002/anie.201308235

    Article  CAS  Google Scholar 

  94. Schantz EJ, Mold JD, Stanger DW, Shavel J, Riel FJ, Bowden JP et al (1957) Paralytic shellfish poison. VI. A procedure for the isolation and purification of the poison from toxic clam and mussel tissues. J Am Chem Soc 79(19):5230–5235. https://doi.org/10.1021/ja01576a044

    Article  CAS  Google Scholar 

  95. Schantz EJ, Lynch JM, Vayvada G, Matsumoto K, Rapoport H (1966) The purification and characterization of the poison produced by Gonyaulax catenella in axenic culture*. Biochemistry 5(4):1191–1195. https://doi.org/10.1021/bi00868a011

    Article  CAS  PubMed  Google Scholar 

  96. Gentile JH, Maloney TE (1969) Toxicity and environmental requirements of a strain of Aphanizomenon flos-aquae (L.) Ralfs. Can J Microbiol 15(2):165–173. https://doi.org/10.1139/m69-028

    Article  CAS  PubMed  Google Scholar 

  97. Kellmann R, Michali TK, Neilan BA (2008) Identification of a saxitoxin biosynthesis gene with a history of frequent horizontal gene transfers. J Mol Evol 67(5):526–538. https://doi.org/10.1007/s00239-008-9169-2

    Article  CAS  PubMed  Google Scholar 

  98. Stüken A, Orr RJS, Kellmann R, Murray SA, Neilan BA, Jakobsen KS (2011) Discovery of nuclear-encoded genes for the neurotoxin saxitoxin in dinoflagellates. PLoS One 6(5):e20096. https://doi.org/10.1371/journal.pone.0020096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kellmann R, Mihali TK, Jeon YJ, Pickford R, Pomati F, Neilan BA (2008) Biosynthetic intermediate analysis and functional homology reveal a saxitoxin gene cluster in cyanobacteria. Appl Environ Microbiol 74(13):4044–4053. https://doi.org/10.1128/AEM.00353-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Hackett JD, Wisecaver JH, Brosnahan ML, Kulis DM, Anderson DM, Bhattacharya D et al (2013) Evolution of saxitoxin synthesis in cyanobacteria and dinoflagellates. Mol Biol Evol 30(1):70–78. https://doi.org/10.1093/molbev/mss142

    Article  CAS  PubMed  Google Scholar 

  101. Wiese M, D’Agostino PM, Mihali TK, Moffitt MC, Neilan BA (2010) Neurotoxic alkaloids: saxitoxin and its analogs. Mar Drugs 8(7):2185–2211. https://doi.org/10.3390/md8072185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Pearson LA, Dittmann E, Mazmouz R, Ongley SE, D’Agostino PM, Neilan BA (2016) The genetics, biosynthesis and regulation of toxic specialized metabolites of cyanobacteria. Harmful Algae 54:98–111. https://doi.org/10.1016/j.hal.2015.11.002

    Article  CAS  PubMed  Google Scholar 

  103. Bartram J, Chorus I (1999) Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management, 1st edn. E & F Spon, London

    Book  Google Scholar 

  104. Haddad SP, Bobbitt JM, Taylor RB, Lovin LM, Conkle JL, Chambliss CK et al (2019) Determination of microcystins, nodularin, anatoxin-a, cylindrospermopsin, and saxitoxin in water and fish tissue using isotope dilution liquid chromatography tandem mass spectrometry. J Chromatogr A 1599:66–74. https://doi.org/10.1016/j.chroma.2019.03.066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Pearson L, Mihali T, Moffitt M, Kellmann R, Neilan B (2010) On the chemistry, toxicology and genetics of the cyanobacterial toxins, microcystin, nodularin, saxitoxin and cylindrospermopsin. Mar Drugs 8(5):1650–1680. https://doi.org/10.3390/md8051650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Su Z, Sheets M, Ishida H, Li F, Barry WH (2004) Saxitoxin blocks L-Type I Ca. J Pharmacol Exp Ther 308(1):324–329. https://doi.org/10.1124/jpet.103.056564

    Article  CAS  PubMed  Google Scholar 

  107. Ritchie JM, Rogart RB (1977) The binding of saxitoxin and tetrodotoxin to excitable tissue. In: Reviews of physiology, biochemistry and pharmacology, vol 79. Springer, pp 1–50

    Google Scholar 

  108. Deblois CP, Giani A, Bird DF (2011) Experimental model of microcystin accumulation in the liver of Oreochromis niloticus exposed subchronically to a toxic bloom of Microcystis sp. Aquat Toxicol 103(1–2):63–70. https://doi.org/10.1016/j.aquatox.2011.02.006

    Article  CAS  PubMed  Google Scholar 

  109. Mohamed ZA, Carmichael WW, Hussein AA (2003) Estimation of microcystins in the freshwater fish Oreochromis niloticus in an Egyptian fish farm containing a Microcystis bloom. Environ Toxicol 18(2):137–141. https://doi.org/10.1002/tox.10111

    Article  CAS  PubMed  Google Scholar 

  110. Humpage AR, Magalhaes VF, Froscio SM (2010) Comparison of analytical tools and biological assays for detection of paralytic shellfish poisoning toxins. Anal Bioanal Chem 397(5):1655–1671. https://doi.org/10.1007/s00216-010-3459-4

    Article  CAS  PubMed  Google Scholar 

  111. Hiller S, Krock B, Cembella A, Luckas B (2007) Rapid detection of cyanobacterial toxins in precursor ion mode by liquid chromatography tandem mass spectrometry. J Mass Spectrom 42(July):1238–1250. https://doi.org/10.1002/jms.1257

    Article  CAS  PubMed  Google Scholar 

  112. Greer B, Maul R, Campbell K, Elliott CT (2017) Detection of freshwater cyanotoxins and measurement of masked microcystins in tilapia from Southeast Asian aquaculture farms. Anal Bioanal Chem 409(16):4057–4069. https://doi.org/10.1007/s00216-017-0352-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Demarque DP, Dusi RG, De Sousa FDM, Grossi SM, Silvério MRS, Lopes NP et al (2020) Mass spectrometry-based metabolomics approach in the isolation of bioactive natural products. Sci Rep Nat Res 10(1051):1–9. https://doi.org/10.1038/s41598-020-58046-y

    Article  CAS  Google Scholar 

  114. Schwarz D, Orf I, Kopka J, Hagemann M (2013) Recent applications of metabolomics toward cyanobacteria. Meta 3(1):72–100. https://doi.org/10.3390/metabo3010072

    Article  CAS  Google Scholar 

  115. Shulaev V (2006) Metabolomics technology and bioinformatics. Brief Bioinform 7(2):128–139. https://doi.org/10.1093/bib/bbl012

    Article  CAS  PubMed  Google Scholar 

  116. Canuto GAB, Costa JL da, Cruz, Pedro LR da, Souza ARL, Faccio AT, Klassen A et al (2018) Metabolômica: definições, estado-da-arte e aplicações representativas. Quim Nova 41(1):75–91. https://doi.org/10.21577/0100-4042.20170134

    Article  CAS  Google Scholar 

  117. Wishart DS (2019) NMR metabolomics: a look ahead. J Magn Reson 306:155–161. https://doi.org/10.1016/j.jmr.2019.07.013

    Article  CAS  PubMed  Google Scholar 

  118. Fiehn O (2016) Metabolomics by gas chromatography–mass spectrometry: combined targeted and untargeted profiling. Curr Protoc Mol Biol 114(1):232–235. https://doi.org/10.1002/0471142727.mb3004s114

    Article  Google Scholar 

  119. Krug D, Müller R (2014) Secondary metabolomics: the impact of mass spectrometry-based approaches on the discovery and characterization of microbial natural products. Nat Prod Rep 31(6):768–783. https://doi.org/10.1039/c3np70127a

    Article  CAS  PubMed  Google Scholar 

  120. Boizard F, Brunchault V, Moulos P, Breuil B, Klein J, Lounis N et al (2016) A capillary electrophoresis coupled to mass spectrometry pipeline for long term comparable assessment of the urinary metabolome. Sci Rep 6(September):1–17. https://doi.org/10.1038/srep34453

    Article  CAS  Google Scholar 

  121. Oshima Y (1995) Postcolumn derivatization liquid chromatographic method for paralytic shellfish toxins. J AOAC Int 78(2):528–532. https://doi.org/10.1093/jaoac/78.2.528

    Article  CAS  Google Scholar 

  122. Lawrence JF, Niedzwiadek B (2001) Quantitative determination of paralytic shellfish poisoning toxins in shellfish by using prechromatographic oxidation and liquid chromatography with fluorescence detection. J AOAC Int 84(4):1099–1108. https://doi.org/10.1093/jaoac/84.4.1099

    Article  CAS  PubMed  Google Scholar 

  123. Pekar H, Westerberg E, Bruno O, Lääne A, Persson KM, Sundström LF et al (2016) Fast, rugged and sensitive ultra high pressure liquid chromatography tandem mass spectrometry method for analysis of cyanotoxins in raw water and drinking water-first findings of anatoxins, cylindrospermopsins and microcystin variants in Swedish source waters and infiltration ponds. J Chromatogr A 1429:265–276. https://doi.org/10.1016/j.chroma.2015.12.049

    Article  CAS  PubMed  Google Scholar 

  124. Bogialli S, Bortolini C, Di Gangi IM, Di Gregorio FN, Lucentini L, Favaro G et al (2017) Liquid chromatography-high resolution mass spectrometric methods for the surveillance monitoring of cyanotoxins in freshwaters. Talanta 170(December 2016):322–330. https://doi.org/10.1016/j.talanta.2017.04.033

    Article  CAS  PubMed  Google Scholar 

  125. Lei H, Song Y, Dong M, Chen G, Cao Z, Wu F et al (2021) Metabolomics safety assessments of microcystin exposure via drinking water in rats. Ecotoxicol Environ Saf 212:111989. https://doi.org/10.1016/j.ecoenv.2021.111989

    Article  CAS  PubMed  Google Scholar 

  126. Jacinavicius FR, Geraldes V, Crnkovic CM, Delbaje E, Fiore MF, Pinto E (2021) Effect of ultraviolet radiation on the metabolomic profiles of potentially toxic cyanobacteria. FEMS Microbiol Ecol 97(1):fiaa243. https://doi.org/10.1093/femsec/fiaa243

    Article  CAS  PubMed  Google Scholar 

  127. Burrell S, Crum S, Foley B, Turner AD (2016) Proficiency testing of laboratories for paralytic shellfish poisoning toxins in shellfish by QUASIMEME: a review. TrAC Trends Anal Chem 75:10–23. https://doi.org/10.1016/j.trac.2015.09.004

    Article  CAS  Google Scholar 

  128. Etheridge SM (2010) Paralytic shellfish poisoning: seafood safety and human health perspectives. Toxicon 56(2):108–122. https://doi.org/10.1016/j.toxicon.2009.12.013

    Article  CAS  PubMed  Google Scholar 

  129. Diener M, Erler K, Christian B, Luckas B (2007) Application of a new zwitterionic hydrophilic interaction chromatography column for determination of paralytic shellfish poisoning toxins. J Sep Sci 30(12):1821–1826. https://doi.org/10.1002/jssc.200700025

    Article  CAS  PubMed  Google Scholar 

  130. Farrer D, Counter M, Hillwig R, Cude C (2015) Health-based cyanotoxin guideline values allow for cyanotoxin-based monitoring and efficient public health response to cyanobacterial blooms. Toxins (Basel) 7(2):457–477. https://doi.org/10.3390/toxins7020457

    Article  CAS  PubMed  Google Scholar 

  131. Kaya K, Sano T (1999) Total microcystin determination using acid (MMPB-d 3) as the internal standard. Anal Chim Acta 386:107–112. https://doi.org/10.1016/S0003-2670(99)00012-4

    Article  CAS  Google Scholar 

  132. Falconer I, Bartram J, Chorus I, Kuiper-Goodman T, Utkilen H, Burch M et al (1999) Safe levels and safe practices. In: Toxic cyanobacteria in water. CRC Press, pp 175–198

    Google Scholar 

  133. Schymanski EL, Singer HP, Slobodnik J, Ipolyi IM, Oswald P, Krauss M et al (2015) Non-target screening with high-resolution mass spectrometry: critical review using a collaborative trial on water analysis. Anal Bioanal Chem 407(21):6237–6255. https://doi.org/10.1007/s00216-015-8681-7

    Article  CAS  PubMed  Google Scholar 

  134. Via CW, Glukhov E, Costa S, Zimba PV, Moeller PDR, Gerwick WH et al (2018) The metabolome of a cyanobacterial bloom visualized by MS/MS-based molecular networking reveals new neurotoxic smenamide analogs (C, D, and E). Front Chem 6(July):1–9. https://doi.org/10.3389/fchem.2018.00316

    Article  CAS  Google Scholar 

  135. Stewart AK, Ravindra R, Van Wagoner RM, Wright JLC (2018) Metabolomics-guided discovery of microginin peptides from cultures of the cyanobacterium Microcystis aeruginosa. J Nat Prod 81(2):349–355. https://doi.org/10.1021/acs.jnatprod.7b00829

    Article  CAS  PubMed  Google Scholar 

  136. Baliu-Rodriguez D, Peraino NJ, Premathilaka SH, Birbeck JA, Baliu-Rodriguez T, Westrick JA et al (2022) Identification of novel microcystins using high-resolution MS and MS n with python code. Environ Sci Technol:acs.est.1c04296. https://doi.org/10.1021/acs.est.1c04296

  137. Briand E, Bormans M, Gugger M, Dorrestein PC, Gerwick WH (2016) Changes in secondary metabolic profiles of Microcystis aeruginosa strains in response to intraspecific interactions. Environ Microbiol 18(2):384–400. https://doi.org/10.1111/1462-2920.12904

    Article  CAS  PubMed  Google Scholar 

  138. Le Moigne D, Demay J, Reinhardt A, Bernard C, Kim Tiam S, Marie B (2021) Dynamics of the metabolome of Aliinostoc sp. PMC 882.14 in response to light and temperature variations. Meta 11(11):745. https://doi.org/10.3390/metabo11110745

    Article  CAS  Google Scholar 

  139. Newman DJ, Cragg GM (2020) Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod 83(3):770–803. https://doi.org/10.1021/acs.jnatprod.9b01285

    Article  CAS  PubMed  Google Scholar 

  140. Pye CR, Bertin MJ, Lokey RS, Gerwick WH, Linington RG (2017) Retrospective analysis of natural products provides insights for future discovery trends. Proc Natl Acad Sci 114(22):5601–5606. https://doi.org/10.1073/pnas.1614680114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Bisson J, McAlpine JB, Friesen JB, Chen S-N, Graham J, Pauli GF (2016) Can invalid bioactives undermine natural product-based drug discovery? J Med Chem 59(5):1671–1690. https://doi.org/10.1021/acs.jmedchem.5b01009

    Article  CAS  PubMed  Google Scholar 

  142. Beutler JA (2009) Natural products as a foundation for drug discovery. Curr Protoc Pharmacol 46(1):1–21. https://doi.org/10.1002/0471141755.ph0911s46

    Article  Google Scholar 

  143. Harvey AL, Edrada-Ebel R, Quinn RJ (2015) The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discov 14(2):111–129. https://doi.org/10.1038/nrd4510

    Article  CAS  PubMed  Google Scholar 

  144. Raja R, Hemaiswarya S, Ganesan V, Carvalho IS (2015) Recent developments in therapeutic applications of cyanobacteria. Crit Rev Microbiol 42(3):1–12. https://doi.org/10.3109/1040841X.2014.957640

    Article  CAS  Google Scholar 

  145. Williams DH, Stone MJ, Hauck PR, Rahman SK (1989) Why are secondary metabolites (natural products) biosynthesized? J Nat Prod 52(6):1189–1208. https://doi.org/10.1021/np50066a001

    Article  CAS  PubMed  Google Scholar 

  146. Sukuru SCK, Jenkins JL, Beckwith REJ, Scheiber J, Bender A, Mikhailov D et al (2009) Plate-based diversity selection based on empirical HTS data to enhance the number of hits and their chemical diversity. J Biomol Screen 14(6):690–699. https://doi.org/10.1177/1087057109335678

    Article  CAS  PubMed  Google Scholar 

  147. Boudreau PD, Monroe EA, Mehrotra S, Desfor S, Korobeynikov A, Sherman DH et al (2015) Expanding the described metabolome of the marine cyanobacterium Moorea producens JHB through orthogonal natural products workflows. PLoS One 10(7):e0133297. https://doi.org/10.1371/journal.pone.0133297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Yang JY, Sanchez LM, Rath CM, Liu X, Boudreau PD, Bruns N et al (2013) Molecular networking as a dereplication strategy. J Nat Prod 76(9):1686–1699. https://doi.org/10.1021/np400413s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Hofer U (2018) The majority is uncultured. Nat Rev Microbiol 16(12):716–717. https://doi.org/10.1038/s41579-018-0097-x

    Article  CAS  PubMed  Google Scholar 

  150. Luzzatto-Knaan T, Garg N, Wang M, Glukhov E, Peng Y, Ackermann G et al (2017) Digitizing mass spectrometry data to explore the chemical diversity and distribution of marine cyanobacteria and algae. elife 6:1–20. https://doi.org/10.7554/eLife.24214

    Article  Google Scholar 

  151. Ding L, Bar-Shalom R, Aharonovich D, Kurisawa N, Patial G, Li S et al (2021) Metabolomic characterization of a cf. Neolyngbya cyanobacterium from the South China Sea reveals Wenchangamide A, a Lipopeptide with in vitro apoptotic potential in colon cancer cells. Mar Drugs 19(7):397. https://doi.org/10.3390/md19070397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Albarano L, Esposito R, Ruocco N, Costantini M (2020) Genome mining as new challenge in natural products discovery. Mar Drugs 18(4):199. https://doi.org/10.3390/md18040199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Scherlach K, Hertweck C (2021) Mining and unearthing hidden biosynthetic potential. Nat Commun 12(1):3864. https://doi.org/10.1038/s41467-021-24133-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Zerikly M, Challis GL (2009) Strategies for the discovery of new natural products by genome mining. Chembiochem 10(4):625–633. https://doi.org/10.1002/cbic.200800389

    Article  CAS  PubMed  Google Scholar 

  155. Machado H, Tuttle RN, Jensen PR (2017) Omics-based natural product discovery and the lexicon of genome mining. Curr Opin Microbiol 39:136–142. https://doi.org/10.1016/j.mib.2017.10.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP, Medema MH et al (2021) antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res 49(W1):W29–W35. https://doi.org/10.1093/nar/gkab335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Ziemert N, Podell S, Penn K, Badger JH, Allen E, Jensen PR (2012) The natural product domain seeker NaPDoS: a phylogeny based bioinformatic tool to classify secondary metabolite gene diversity. PLoS One 7(3):e34064. https://doi.org/10.1371/journal.pone.0034064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Skinnider MA, Merwin NJ, Johnston CW, Magarvey NA (2017) PRISM 3: expanded prediction of natural product chemical structures from microbial genomes. Nucleic Acids Res 45(W1):W49–W54. https://doi.org/10.1093/nar/gkx320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. van Heel AJ, de Jong A, Montalbán-López M, Kok J, Kuipers OP (2013) BAGEL3: automated identification of genes encoding bacteriocins and (non-)bactericidal posttranslationally modified peptides. Nucleic Acids Res 41(W1):W448–W453. https://doi.org/10.1093/nar/gkt391

    Article  PubMed  PubMed Central  Google Scholar 

  160. Khaldi N, Seifuddin FT, Turner G, Haft D, Nierman WC, Wolfe KH et al (2010) SMURF: genomic mapping of fungal secondary metabolite clusters. Fungal Genet Biol 47(9):736–741. https://doi.org/10.1016/j.fgb.2010.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Navarro-Muñoz JC, Selem-Mojica N, Mullowney MW, Kautsar SA, Tryon JH, Parkinson EI et al (2020) A computational framework to explore large-scale biosynthetic diversity. Nat Chem Biol 16(1):60–68. https://doi.org/10.1038/s41589-019-0400-9

    Article  CAS  PubMed  Google Scholar 

  162. Alanjary M, Kronmiller B, Adamek M, Blin K, Weber T, Huson D et al (2017) The Antibiotic Resistant Target Seeker (ARTS), an exploration engine for antibiotic cluster prioritization and novel drug target discovery. Nucleic Acids Res 45(W1):W42–W48. https://doi.org/10.1093/nar/gkx360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. van der Hooft JJJ, Mohimani H, Bauermeister A, Dorrestein PC, Duncan KR, Medema MH (2020) Linking genomics and metabolomics to chart specialized metabolic diversity. Chem Soc Rev. https://doi.org/10.1039/D0CS00162G

  164. Kleigrewe K, Almaliti J, Tian IY, Kinnel RB, Korobeynikov A, Monroe EA et al (2015) Combining mass spectrometric metabolic profiling with genomic analysis: a powerful approach for discovering natural products from cyanobacteria. J Nat Prod 78(7):1671–1682. https://doi.org/10.1021/acs.jnatprod.5b00301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. McCaughey CS, van Santen JA, van der Hooft JJJ, Medema MH, Linington RG (2021) An isotopic labeling approach linking natural products with biosynthetic gene clusters. Nat Chem Biol. https://doi.org/10.1038/s41589-021-00949-6

  166. Huang X, Chen Y-J, Cho K, Nikolskiy I, Crawford PA, Patti GJ (2014) X13CMS: global tracking of isotopic labels in untargeted metabolomics. Anal Chem 86(3):1632–1639. https://doi.org/10.1021/ac403384n

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Chokkathukalam A, Jankevics A, Creek DJ, Achcar F, Barrett MP, Breitling R (2013) mzMatch–ISO: an R tool for the annotation and relative quantification of isotope-labelled mass spectrometry data. Bioinformatics 29(2):281–283. https://doi.org/10.1093/bioinformatics/bts674

    Article  CAS  PubMed  Google Scholar 

  168. May DS, Crnkovic CM, Krunic A, Wilson TA, Fuchs JR, Orjala JE (2020) 15 N stable isotope labeling and comparative metabolomics facilitates genome mining in cultured cyanobacteria. ACS Chem Biol 15(3):758–765. https://doi.org/10.1021/acschembio.9b00993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Kinnel RB, Esquenazi E, Leao T, Moss N, Mevers E, Pereira AR et al (2017) A maldiisotopic approach to discover natural products: cryptomaldamide, a hybrid tripeptide from the marine cyanobacterium Moorea producens. J Nat Prod 80(5):1514–1521. https://doi.org/10.1021/acs.jnatprod.7b00019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Spraker JE, Luu GT, Sanchez LM (2020) Imaging mass spectrometry for natural products discovery: a review of ionization methods. Nat Prod Rep. https://doi.org/10.1039/C9NP00038K

  171. Oberlies NH, Knowles SL, Amrine CSM, Kao D, Kertesz V, Raja HA (2019) Droplet probe: coupling chromatography to the in situ evaluation of the chemistry of nature. Nat Prod Rep 36(7):944–959. https://doi.org/10.1039/C9NP00019D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Crnkovic CM, Krunic A, May DS, Wilson TA, Kao D, Burdette JE et al (2018) Calothrixamides A and B from the cultured cyanobacterium Calothrix sp. UIC 10520. J Nat Prod 81(9):2083–2090. https://doi.org/10.1021/acs.jnatprod.8b00432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Pan R, Bai X, Chen J, Zhang H, Wang H (2019) Exploring structural diversity of microbe secondary metabolites using OSMAC strategy: a literature review. Front Microbiol 10(Feb):1–20. https://doi.org/10.3389/fmicb.2019.00294

    Article  Google Scholar 

  174. Romano S, Jackson SA, Patry S, Dobson ADW (2018) Extending the “one strain many compounds” (OSMAC) principle to marine microorganisms. Mar Drugs 16(7):1–29. https://doi.org/10.3390/md16070244

    Article  CAS  Google Scholar 

  175. Crnkovic CM, May DS, Orjala J (2018) The impact of culture conditions on growth and metabolomic profiles of freshwater cyanobacteria. J Appl Phycol 30(1):375–384. https://doi.org/10.1007/s10811-017-1275-3

    Article  CAS  PubMed  Google Scholar 

  176. Tautenhahn R, Patti GJ, Rinehart D, Siuzdak G (2012) XCMS online: a web-based platform to process untargeted metabolomic data. Anal Chem 84(11):5035–5039. https://doi.org/10.1021/ac300698c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Gowda H, Ivanisevic J, Johnson CH, Kurczy ME, Benton HP, Rinehart D et al (2014) Interactive XCMS online: simplifying advanced metabolomic data processing and subsequent statistical analyses. Anal Chem 86(14):6931–6939. https://doi.org/10.1021/ac500734c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Crnkovic CM, Braesel J, Krunic A, Eustμquio AS, Orjala J (2019) Scytodecamide from the cultured Scytonema sp. UIC 10036 expands the chemical and genetic diversity of cyanobactins. Chembiochem:1–9. https://doi.org/10.1002/cbic.201900511

  179. Sivonen K, Leikoski N, Fewer DP, Jokela J (2010) Cyanobactins – ribosomal cyclic peptides produced by cyanobacteria. Appl Microbiol Biotechnol 86(5):1213–1225. https://doi.org/10.1007/s00253-010-2482-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Leikoski N, Liu L, Jokela J, Wahlsten M, Gugger M, Calteau A et al (2013) Genome mining expands the chemical diversity of the cyanobactin family to include highly modified linear peptides. Chem Biol 20(8):1033–1043. https://doi.org/10.1016/j.chembiol.2013.06.015

    Article  CAS  PubMed  Google Scholar 

  181. Leikoski N, Fewer DP, Jokela J, Wahlsten M, Rouhiainen L, Sivonen K (2010) Highly diverse cyanobactins in strains of the genus Anabaena. Appl Environ Microbiol 76(3):701–709. https://doi.org/10.1128/AEM.01061-09

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camila Manoel Crnkovic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Weiss, M.B., Médice, R.V., Jacinavicius, F.R., Pinto, E., Crnkovic, C.M. (2023). Metabolomics Applied to Cyanobacterial Toxins and Natural Products. In: Pacheco Fill, T. (eds) Microbial Natural Products Chemistry. Advances in Experimental Medicine and Biology(), vol 1439. Springer, Cham. https://doi.org/10.1007/978-3-031-41741-2_2

Download citation

Publish with us

Policies and ethics