Skip to main content

A Symbolic-Numeric Method for Solving the Poisson Equation in Polar Coordinates

  • Conference paper
  • First Online:
Computer Algebra in Scientific Computing (CASC 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14139))

Included in the following conference series:

  • 209 Accesses

Abstract

A new version of the method of collocations and least squares (CLS) is proposed for the numerical solution of the Poisson equation in polar coordinates on uniform and non-uniform grids. To increase the accuracy of the numerical solution the degree of the local approximating polynomial has been increased by one in comparison with the earlier second-degree version of the CLS method for solving the Poisson equation. By introducing the general curvilinear coordinates the original Poisson equation has been reduced to the Beltrami equation. The method has been verified on three test problems having the exact analytic solutions. The examples of numerical computations show that if the singularity – the radial coordinate origin lies outside the computational region then the proposed method produces the solution errors which are two orders of magnitude less than in the case of the earlier CLS method. If the computational region contains the singularity then the solution errors are generally two and three orders of magnitude less than in the case of a second-degree approximating polynomial at the same number of grid nodes.

The research was carried out within the state assignment of Ministry of Science and Higher Education of the Russian Federation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Belyaev, V.V., Shapeev, V.P.: The method of collocations and least squares on adaptive grids in a region with curvilinear boundary. Vychislitelnye tehnologii 5(4), 12–21 (2000). (in Russian)

    Google Scholar 

  2. Borges, L., Daripa, P.: A fast parallel algorithm for the Poisson equation on a disk. J. Comput. Phys. 169, 151–192 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cavendish, J.C.: Collocation methods for elliptic and parabolic boundary value problems. Ph.D. thesis. University of Pittsburgh, Pittsburgh, PA (1972)

    Google Scholar 

  4. Chen, H., Min, C., Gibou, F.: A supra-convergent finite difference scheme for the Poisson and heat equations on irregular domains and non-graded adaptive Cartesian grids. J. Sci. Comput. 31(1/2), 19–60 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Faleichik, B.V.: Explicit implementation of collocation methods for stiff systems with complex spectrum. J. Numer. Anal. Ind. Appl. Math. 5(1–2), 49–59 (2010)

    Google Scholar 

  6. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  7. Householder, A.S.: Unitary triangularization of a nonsymmetric matrix. J. Assoc. Comput. Mach. 5, 339–342 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  8. Isaev, V.I., Shapeev, V.P., Eremin, S.A.: Investigation of the properties of the method of collocation and least squares for solving the boundary value problems for the Poisson equation and the Navier-Stokes equations. Vychislitelnye tehnologii 12(3), 53–70 (2007). (in Russian)

    MATH  Google Scholar 

  9. Isaev, V.I., Shapeev, V.P.: High-accuracy versions of the collocations and least squares method for the numerical solution of the Navier-Stokes equations. Comput. Math. Math. Phys. 50(10), 1670–1681 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Isaev, V.I., Shapeev, V.P.: High-order accurate collocations and least squares method for solving the Navier-Stokes equations. Dokl. Math. 85, 71–74 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jackson, J.D.: Classical Electrodynamics, 3rd edn. Wiley, Hoboken (2001)

    MATH  Google Scholar 

  12. Kiselev, S.P., Kiselev, V.P., Vorozhtsov, E.V.: Smoothed particle hydrodynamics method used for numerical simulation of impact between an aluminum particle and a titanium target. J. Appl. Mech. Tech. Phys. 63(6), 1035–1049 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kiselev, S.P., Vorozhtsov, E.V., Fomin, V.M.: Foundations of Fluid Mechanics with Applications: Problem Solving Using Mathematica. Springer, Cham (2017)

    Book  MATH  Google Scholar 

  14. Knupp, P., Steinberg, S.: Fundamentals of Grid Generation. CRC Press, Boca Raton (1994)

    MATH  Google Scholar 

  15. Kuzenov, V.V., Ryzhkov, S.V., Starostin, A.V.: Development of a mathematical model and the numerical solution method in a combined impact scheme for MIF target. Russ. J. Nonlinear Dyn. 16(2), 325–341 (2020)

    MathSciNet  Google Scholar 

  16. Lai, M.-C.: A simple compact fourth-order Poisson solver on polar geometry. J. Comput. Phys. 182, 337–345 (2002)

    Article  MATH  Google Scholar 

  17. Lai, M.-C., Lin, W.-W., Wang, W.: A fast spectral/difference method without pole conditions for Poisson-type equations in cylindrical and spherical geometries. IMA J. Numer. Anal. 22(4), 537–548 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ling, L., Schaback, R.: An improved subspace selection algorithm for meshless collocation methods. Int. J. Numer. Meth. Eng. 80, 1623–1639 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liu, C.-S., Yeih, W., Atluri, S.N.: On solving the ill-conditioned system AX = b: general-purpose conditioners obtained from the boundary-collocation solution of the Laplace equation, using Trefftz expansions with multiple length scales. Comput. Model. Eng. Sci. 44(3), 281–311 (2009)

    MathSciNet  MATH  Google Scholar 

  20. Luikov, A.V.: Analytical Heat Diffusion Theory. Academic Press, New York (1968)

    Google Scholar 

  21. Popinet, S.: Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries. J. Comput. Phys. 190, 572–600 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Prenter, P.M., Russell, R.D.: Orthogonal collocation for elliptic partial differential equations. SIAM J. Numer. Anal. 13(6), 923–939 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ray, R.K., Kalita, J.C.: A transformation-free HOC scheme for incompressible viscous flows on nonuniform polar grids. Int. J. Numer. Methods Fluids 62, 683–708 (2010)

    MathSciNet  MATH  Google Scholar 

  24. Russell, R.D., Shampine, L.F.: A collocation method for boundary value problems. Numer. Math. 10, 582–606 (1972)

    MathSciNet  MATH  Google Scholar 

  25. Samarskii, A.A., Andreev, V.B.: Difference Methods for Elliptic Equations. Nauka, Moscow (1976)

    MATH  Google Scholar 

  26. Schwarz, H.A.: Über einem Grenzübergang durch alternierendes Verfahren. Vierteljahrsschrift der naturforschenden Gesellschaft in Zürich 15, 272–286 (1870)

    Google Scholar 

  27. Semin, L.G., Sleptsov, A.G., Shapeev, V.P.: The method of collocations and least squares for the Stokes equations. Vychislitelnye Tehnologii 1(2), 90–98 (1996). (in Russian)

    MATH  Google Scholar 

  28. Shapeev, V.P., Bryndin, L.S., Belyaev, V.A.: Numerical solution of an elliptic problem with several interfaces. Numer. Methods Program. 23(3), 172–190 (2022). https://doi.org/10.26089/NumMet.v23r311. (in Russian)

    Article  Google Scholar 

  29. Shapeev, V.P., Vorozhtsov, E.V.: Application of computer algebra systems to the construction of the collocations and least residuals method for solving the 3D Navier-Stokes equations. Model. Anal. Inf. Syst. 21(5), 131–147 (2014). (in Russian)

    Article  Google Scholar 

  30. Shapeev, V.P., Vorozhtsov, E.V.: Application of the method of collocations and least residuals to the solution of the Poisson equation in polar coordinates. J. Multidisciplinary Eng. Sci. Technol. 2(9), 2553–2562 (2015)

    Google Scholar 

  31. Shapeev, V.P., Vorozhtsov, E.V.: CAS application to the construction of the collocations and least residuals method for the solution of 3D Navier–Stokes equations. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2013. LNCS, vol. 8136, pp. 381–392. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-02297-0_31

    Chapter  Google Scholar 

  32. Shapeev, V.P., Vorozhtsov, E.V., Isaev, V.I., Idimeshev, S.V.: The method of collocations and least residuals for three-dimensional Navier-Stokes equations. Numer. Methods Program. 14(3), 306–322 (2013). (in Russian)

    Google Scholar 

  33. Sleptsov, A.G.: Collocation-grid solution of elliptic boundary value problems. Modelirovanie v mekhanike 5(22)(2), 101–126 (1991). (in Russian)

    Google Scholar 

  34. Swartztrauber, P.N., Sweet, R.A.: The direct solution of the discrete Poisson equation on a disc. SIAM J. Numer. Anal. 10, 900–907 (1973)

    Article  MathSciNet  Google Scholar 

  35. Thompson, J.F., Warsi, Z.U.A., Mastin, C.W.: Numerical Grid Generation: Foundations and Applications. North-Holland, New York (1985)

    MATH  Google Scholar 

  36. Vorozhtsov, E.V., Shapeev, V.P.: On combining the techniques for convergence acceleration of iteration processes during the numerical solution of Navier-Stokes equations. Numer. Methods Program. 18, 80–102 (2017). (in Russian)

    Google Scholar 

  37. Vorozhtsov, E.V., Shapeev, V.P.: A divergence-free method for solving the incompressible Navier–Stokes equations on non-uniform grids and its symbolic-numeric implementation. In: England, M., Koepf, W., Sadykov, T.M., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2019. LNCS, vol. 11661, pp. 430–450. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26831-2_28

    Chapter  Google Scholar 

  38. Vorozhtsov, E.V., Shapeev, V.P.: On the efficiency of combining different methods for acceleration of iterations at the solution of PDEs by the method of collocations and least residuals. Appl. Math. Comput. 363, 1–19 (2019). https://doi.org/10.1016/j.amc.2019.124644

    Article  MathSciNet  MATH  Google Scholar 

  39. Yu, P.X., Tian, Z.F.: A compact scheme for the streamfunction-velocity formulation of the 2D steady incompressible Navier-Strokes equations in polar coordinates. J. Sci. Comput. 56, 165–189 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgenii V. Vorozhtsov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vorozhtsov, E.V. (2023). A Symbolic-Numeric Method for Solving the Poisson Equation in Polar Coordinates. In: Boulier, F., England, M., Kotsireas, I., Sadykov, T.M., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2023. Lecture Notes in Computer Science, vol 14139. Springer, Cham. https://doi.org/10.1007/978-3-031-41724-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-41724-5_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-41723-8

  • Online ISBN: 978-3-031-41724-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics