Skip to main content

On the Qualitative Analysis of the Equations of Motion of a Nonholonomic Mechanical System

  • Conference paper
  • First Online:
Computer Algebra in Scientific Computing (CASC 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14139))

Included in the following conference series:

  • 210 Accesses

Abstract

The problem on the rotation of a dynamically asymmetric rigid body around a fixed point is considered. The body is fixed inside a spherical shell, which a ball and a disk adjoin to. The equations of motion of the mechanical system in the case of absence of external forces admit two additional first integrals and these are completely integrable. The nonintegrable case, when potential forces act upon the system, is also considered. The qualitative analysis of the equations of motion is done in the both cases: stationary sets are found and their Lyapunov stability is studied. A mechanical interpretation for the obtained solutions is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chaplygin, S.A.: On rolling a ball on a horizontal plane. Matematicheskii Sbornik 1(24), 139–168 (1903)

    Google Scholar 

  2. Veselov, A.P., Veselova, L.E.: Integrable nonholonomic systems on Lie groups. Math. Notes 5(44), 810–819 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  3. Borisov, A.V., Mamaev, I.S.: A new integrable system of nonholonomic mechanics. Dokl. Phys. 60, 269–271 (2015)

    Article  Google Scholar 

  4. Alves, J., Dias, J.: Design and control of a spherical mobile robot. J. Syst. Control Eng. 217, 457–467 (2003)

    Google Scholar 

  5. Lyapunov, A.M.: On permanent helical motions of a rigid body in fluid. Collected Works USSR Acad. Sci. 1, 276–319 (1954)

    Google Scholar 

  6. Irtegov, V.D., Titorenko, T.N.: On an approach to qualitative analysis of nonlinear dynamic systems. Numer. Analys. Appl. 1(15), 48–62 (2022)

    Article  MATH  Google Scholar 

  7. Banshchikov, A.V., Burlakova, L.A., Irtegov, V.D., Titorenko, T.N.: Software Package for Finding and Stability Analysis of Stationary Sets. Certificate of State Registration of Software Programs. FGU-FIPS, No. 2011615235 (2011)

    Google Scholar 

  8. Irtegov, V., Titorenko, T.: On stationary motions of the generalized Kowalewski gyrostat and thier stability. In: Gerdt, V.P., et al. (eds.) CASC 2017. LNCS, vol. 10490, pp. 210–224. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-66320-3_16

    Chapter  MATH  Google Scholar 

  9. Lyapunov, A.M.: The general problem of the stability of motion. Int. J. Control 55(3), 531–534 (1992)

    Article  MathSciNet  Google Scholar 

  10. Irtegov, V., Titorenko, T.: On equilibrium positions in the problem of the motion of a system of two bodies in a uniform gravity field. In: Boulier, F., et al. (eds.) CASC 2022. LNCS, vol. 13366, pp. 165–184. Springer Nature AG, Cham, Switzerland (2022). https://doi.org/10.1007/978-3-031-14788-3_10

    Chapter  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentin Irtegov .

Editor information

Editors and Affiliations

Appendix

Appendix

$$\begin{aligned} \begin{array}{l} \beta _{11} = (4 e_2^2)^{-1} C \, \Big [ ((e_3^2 - 1) (\gamma _2^2 - 5) - e_2^2 (1 - \gamma _2^2 + z_1^2) + 2 e_2 \gamma _2 z_1 z_2) \, \lambda _0 \\ + C \, [(5 e_3^5 \gamma _2 \, (3 \gamma _3^2 - z_1^2) + e_2 e_3^4 \gamma _3 \, (43 \gamma _2^2 + 20 \gamma _3^2 - 25) + e_2 \gamma _3 \, (e_2^2 - 5) \\ \times (5 - 3 \gamma _2^2 - \gamma _3^2 + e_2^2 \, (4 \gamma _2^2 + \gamma _3^2 - 2)) + e_2 e_3^2 \gamma _3 (50 - 58 \gamma _2^2 - 25 \gamma _3^2 \\ + e_2^2 \, (59 \gamma _2^2 + 17 \gamma _3^2 - 27)) + e_3 \gamma _2 \, (e_2^2 (65 - 37 \gamma _2^2 - 46 \gamma _3^2) + 5 (\gamma _2^2 + 3 \gamma _3^2 - 5) \\ + e_2^4 \, (36 \gamma _2^2 + 23 \gamma _3^2 - 28)) + e_3^3 \gamma _2 \, (e_2^2 (37 \gamma _2^2 + 55 \gamma _3^2 - 33) - 5 (2 \gamma _2^2 + 7 \gamma _3^2 - 6))) \, z_1 \\ + (e_2^4 \gamma _2 \gamma _3 \, (4 (1 - \gamma _2^2) - 3 \gamma _3^2) + e_2^2 \gamma _2 \gamma _3 \, (21 \gamma _2^2 + 16 \gamma _3^2 - 25 + e_3^2 \, (53 - 57 \gamma _2^2 \\ - 45 \gamma _3^2)) - 5 \gamma _2 \gamma _3 \, (e_3^2 - 1) (5 - \gamma _2^2 - \gamma _3^2 + e_3^2 (3 \gamma _2^2 + 4 \gamma _3^2 - 3)) - e_2^3 e_3 \, (10 + 36 \gamma _2^4 \\ - 18 \gamma _3^2 + 7 \gamma _3^4 + \gamma _2^2 \, (41 \gamma _3^2 - 46)) + e_2 e_3 \, (25 - 60 \gamma _2^2 + 19 \gamma _2^4 + (44 \gamma _2^2 - 45) \gamma _3^2 \\ + 15 \gamma _3^4 - e_3^2 \, (10 - 29 \gamma _2^2 + 19 \gamma _2^4 + (53 \gamma _2^2 - 35) \gamma _3^2 + 20 \gamma _3^4))) \, z_2] \, \lambda _2 \Big ], \\ \beta _{22} = (4 e_2^2)^{-1} \, C \, \Big [(3 e_2^2 + 5 e_3^2 - (e_3 \gamma _2 - e_2 \gamma _3)^2) \, \lambda _0 + C \, [(3 e_2^5 \gamma _3 \, (4 \gamma _2^2 + \gamma _3^2 - 1) \\ + e_2^4 e_3 \gamma _2 \, (15 - 12 \gamma _2^2 + 19 \gamma _3^2) - 5 e_3^3 \gamma _2 \, (5 - \gamma _2^2 - 3 \gamma _3^2 + e_3^2 \, (\gamma _2^2 + 4 \gamma _3^2 - 1)) \\ + e_2^2 e_3 \gamma _2 \, (9 \gamma _2^2 - 13 \gamma _3^2 - 21 + e_3^2 \, (24 - 19 \gamma _2^2 + 5 \gamma _3^2)) + e_2 e_3^2 \gamma _3 \, (5 + 11 \gamma _2^2 - 15 \gamma _3^2 \\ + e_3^2 \, (15 - 21 \gamma _2^2 + 20 \gamma _3^2)) + e_2^3 \gamma _3 \, (3 (3 - 3 \gamma _2^2 - \gamma _3^2) + e_3^2 \, (8 - 3 \gamma _2^2 + 21 \gamma _3^2))) \, z_1 \\ + (3 e_2^4 \gamma _2 \gamma _3 \, (3 - 4 \gamma _2^2 - 3 \gamma _3^2) + e_2^2 \gamma _2 \gamma _3 \, (e_3^2 (9 \gamma _2^2 - 15 \gamma _3^2 - 14) + 3 \, (\gamma _2^2 + \gamma _3^2 - 3)) \\ + 5 e_3^2 \gamma _2 \gamma _3 \, (5 - \gamma _2^2 - \gamma _3^2 + e_3^2 \, (3 \gamma _2^2 + 4 \gamma _3^2 - 3)) + e_2^3 e_3 (6 + 12 \gamma _2^4 + 5 \gamma _3^2 - 11 \gamma _3^4 \\ - \gamma _2^2 \, (21 + 13 \gamma _3^2)) + e_2 e_3 (5 \gamma _3^2 \, (\gamma _3^2 - 3) + \gamma _2^2 (15 + 2 \gamma _3^2) - 3 \gamma _2^4 + e_3^2 \, (13 \gamma _2^4 \\ + \gamma _2^2 \, (11 \gamma _3^2 - 23) - 5 \, (\gamma _3^2 + 4 \gamma _3^4 - 2)))) \, z_2] \, \lambda _2 \Big ], \\ \beta _{12} = (4 e_2^2)^{-1} C \, \Big [2 \, (e_2 \, (e_2 \gamma _3 - e_3 \gamma _2) \, z_1 + (e_3 \, (\gamma _2^2 - 5) - e_2 \gamma _2 \gamma _3) \, z_2) \, \lambda _0 \\ + C \, [2 e_2^4 e_3 \gamma _2 \gamma _3 \, (14 \gamma _2^2 + 9 \gamma _3^2 - 15) + 10 e_3 \gamma _2 \gamma _3 \, (e_3^2 - 1) (5 - \gamma _2^2 - \gamma _3^2 \\ + e_3^2 \, (3 \gamma _2^2 + 4 \gamma _3^2 - 3)) + 2 e_2^5 \, (3 + 12 \gamma _2^4 + \gamma _3^2 (\gamma _3^2 - 4 ) + \gamma _2^2 (11 \gamma _3^2 - 15)) \\ + 2 e_2^2 e_3 \gamma _2 \gamma _3 \, (29 - 20 \gamma _2^2 - 7 \gamma _3^2 + e_3^2 \, (39 \gamma _2^2 + 23 \gamma _3^2 - 40)) + e_2^3 \, ( \gamma _3^2 (10 + 3 \gamma _3^2) \\ - 24 \gamma _2^4 - 15 + \gamma _2^2 \, (51 - 13 \gamma _3^2) + e_3^2 \, (62 \gamma _2^4 + 2 \gamma _3^2 \, (2 \gamma _3^2 - 19 ) + 2 \gamma _2^2 \, (31 \gamma _3^2 - 46) \\ + 26)) + e_2 \, (3 \gamma _2^2 (\gamma _2^2 - 5) + (15 - 2 \gamma _2^2) \gamma _3^2 - 5 \gamma _3^4 + 4 e_3^4 \, (8 \gamma _2^2 - 5) (\gamma _2^2 + 2 \gamma _3^2 - 1) \\ + e_3^2 \, (\gamma _2^2 (98 - 53 \gamma _3^2) + 5 (\gamma _3^2 \, (2 \gamma _3^2 + 7) - 7) - 35 \gamma _2^4)) + 2 (2 e_2^3 e_3 \gamma _3 (7 \gamma _2^2 + \gamma _3^2 - 4) \\ + e_2^4 \gamma _2 \, (12 \gamma _2^2 + 5 \gamma _3^2 - 9) + e_2 e_3 \gamma _3 \, (10 - 13 \gamma _2^2 + 4 e_3^2 (8 \gamma _2^2 - 5) + 5 \gamma _3^2) \\ + 5 e_3^2 \gamma _2 \, (5 - \gamma _2^2 - 3 \gamma _3^2 + e_3^2 \, (\gamma _2^2 + 4 \gamma _3^2 - 1)) + e_2^2 \gamma _2 \, (15 - 6 \gamma _2^2 + 2 \gamma _3^2 \end{array} \end{aligned}$$
$$\begin{aligned} \begin{array}{l} + e_3^2 \, (25 \gamma _2^2 + 13 \gamma _3^2 - 26))) \, z_1 z_2] \, \lambda _2 \Big ]. \end{array} \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Irtegov, V., Titorenko, T. (2023). On the Qualitative Analysis of the Equations of Motion of a Nonholonomic Mechanical System. In: Boulier, F., England, M., Kotsireas, I., Sadykov, T.M., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2023. Lecture Notes in Computer Science, vol 14139. Springer, Cham. https://doi.org/10.1007/978-3-031-41724-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-41724-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-41723-8

  • Online ISBN: 978-3-031-41724-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics