Skip to main content

FCN-Boosted Historical Map Segmentation with Little Training Data

  • Conference paper
  • First Online:
Document Analysis and Recognition - ICDAR 2023 (ICDAR 2023)

Abstract

This paper deals with automatic image segmentation in poorly resourced areas. We concentrate on map content segmentation in historical maps as an example of such a domain. In such cases, conventional computer vision (CV) approaches fail in unexpected unique regions such as map content area exceeding the map frame, while deep learning methods lack boundary localization accuracy. Therefore, we propose an efficient approach that combines conventional CV techniques with deep learning and practically eliminates their drawbacks. To do so, we redefine the learning objective of a simple fully convolutional network to make the training easier and the model more robust even with few training samples. The presented method provides excellent results compared to more sophisticated but solely deep learning or traditional computer vision techniques as shown in “MapSeg” segmentation competition, where all other approaches were significantly outperformed. We further propose two additional approaches that improve the original method and set a new state-of-the-art result on the MapSeg dataset. The methods are further tested on an extended version of the Map Border dataset to show their robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aurelie, L., Jean, C.: Segmentation of historical maps without annotated data. In: The 6th International Workshop on Historical Document Imaging and Processing, pp. 19–24 (2021)

    Google Scholar 

  2. Baloun, J., Král, P., Lenc, L.: Chronseg: Novel dataset for segmentation of handwritten historical chronicles. In: Proceedings of the 13th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART, pp. 314–322. INSTICC, SciTePress (2021). https://doi.org/10.5220/0010317203140322

  3. Baloun, J., Lenc, L., Král, P.: Robust grid detection in historical map images. In: 2022 IEEE International Conference on Image Processing (ICIP), pp. 1931–1935 (2022). https://doi.org/10.1109/ICIP46576.2022.9897721

  4. Chazalon, J., et al.: ICDAR 2021 competition on historical map segmentation. In: Lladós, J., Lopresti, D., Uchida, S. (eds.) ICDAR 2021. LNCS, vol. 12824, pp. 693–707. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86337-1_46

    Chapter  Google Scholar 

  5. Chazalon, J., et al.: Icdar 2021 competition on historical map segmentation - dataset. online dataset (2021). https://doi.org/10.5281/zenodo.4817662

  6. Chazalon, J., Edwin-Carlinet: icdar21-mapseg/icdar21-mapseg-eval: zenodo archival (2021). https://doi.org/10.5281/zenodo.4818400

  7. Chen, Y., Carlinet, E., Chazalon, J., Mallet, C., Duménieu, B., Perret, J.: Combining deep learning and mathematical morphology for historical map segmentation. In: Lindblad, J., Malmberg, F., Sladoje, N. (eds.) DGMM 2021. LNCS, vol. 12708, pp. 79–92. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-76657-3_5

    Chapter  Google Scholar 

  8. Chen, Y., Carlinet, E., Chazalon, J., Mallet, C., Duménieu, B., Perret, J.: Vectorization of historical maps using deep edge filtering and closed shape extraction. In: Lladós, J., Lopresti, D., Uchida, S. (eds.) ICDAR 2021. LNCS, vol. 12824, pp. 510–525. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86337-1_34

    Chapter  Google Scholar 

  9. Foroughi, F., Wang, J., Nemati, A., Chen, Z., Pei, H.: Mapsegnet: a fully automated model based on the encoder-decoder architecture for indoor map segmentation. IEEE Access 9, 101530–101542 (2021)

    Article  Google Scholar 

  10. Garcia-Molsosa, A., Orengo, H.A., Lawrence, D., Philip, G., Hopper, K., Petrie, C.A.: Potential of deep learning segmentation for the extraction of archaeological features from historical map series. Archaeol. Prospect. 28(2), 187–199 (2021)

    Article  Google Scholar 

  11. Lenc, L., Martínek, J., Baloun, J., Prantl, M., Král, P.: Historical map toponym extraction for efficient information retrieval. In: Uchida, S., Barney, E., Eglin, V. (eds.) DAS 2022. LNCS, vol. 13237, pp. 171–183. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-06555-2_12

    Chapter  Google Scholar 

  12. Lenc, L., Prantl, M., Martínek, J., Král, P.: Border detection for seamless connection of historical cadastral maps. In: Barney Smith, E.H., Pal, U. (eds.) ICDAR 2021. LNCS, vol. 12916, pp. 43–58. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86198-8_4

    Chapter  Google Scholar 

  13. Li, Z., Chen, J.: Superpixel segmentation using linear spectral clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1356–1363 (2015)

    Google Scholar 

  14. Liu, T., Miao, Q., Xu, P., Song, J., Quan, Y.: Color topographical map segmentation algorithm based on linear element features. Multimedia Tools Appl. 75(10), 5417–5438 (2016)

    Article  Google Scholar 

  15. Liu, T., Miao, Q., Xu, P., Zhang, S.: Superpixel-based shallow convolutional neural network (SSCNN) for scanned topographic map segmentation. Remote Sens. 12(20), 3421 (2020)

    Article  Google Scholar 

  16. Min, J., Kang, D., Cho, M.: Hypercorrelation squeeze for few-shot segmentation. CoRR abs/2104.01538 (2021). https://arxiv.org/abs/2104.01538

  17. Nina, O., Morse, B., Barrett, W.: A recursive OTSU thresholding method for scanned document binarization. In: 2011 IEEE Workshop on Applications of Computer Vision (WACV), pp. 307–314. IEEE (2011)

    Google Scholar 

  18. Peterson, J.C., Battleday, R.M., Griffiths, T.L., Russakovsky, O.: Human uncertainty makes classification more robust. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), October 2019

    Google Scholar 

  19. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

Download references

Acknowledgements

This work has been partly supported by the Grant No. SGS-2022-016 Advanced methods of data processing and analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Baloun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Baloun, J., Lenc, L., Král, P. (2023). FCN-Boosted Historical Map Segmentation with Little Training Data. In: Fink, G.A., Jain, R., Kise, K., Zanibbi, R. (eds) Document Analysis and Recognition - ICDAR 2023. ICDAR 2023. Lecture Notes in Computer Science, vol 14187. Springer, Cham. https://doi.org/10.1007/978-3-031-41676-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-41676-7_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-41675-0

  • Online ISBN: 978-3-031-41676-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics