Skip to main content

Abstract

Deep Rolling as a well-known mechanical surface treatment process is investigated with the objective to tailor residual stress profiles over the sheet metal thickness. Experiments are performed in a milling portal on AA2024 aluminum alloy with a hydrostatically mounted deep rolling tool. Residual stress measurements are carried out using the hole drilling method. A numerical simulation using the finite element method (FEM) is set up and experimentally validated. One of the most effective parameters to tailor residual stresses is the deep rolling force, which is directly linked to the hydraulic tool pressure. The residual stress profiles can be described by characteristic values such as the magnitude of the maximum compressive residual stress and its penetration depth. Deep rolling modifies residual stresses not only along the material depth but also along other spatial directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sticchi, M., Schnubel, D., Kashaev, N., Huber, N.: Review of residual stress modification techniques for extending the fatigue life of metallic aircraft components. Appl. Mech. Rev. 67(1) (2014)

    Google Scholar 

  2. Schijve, J.: Fatigue crack growth. Analysis and Predictions. In: Schijve, J., (eds.) Fatigue of Structures and Materials, pp. 209–256. Springer, Dordrecht (2009). https://doi.org/10.1007/978-3-319-32534-7

  3. Altenberger, I.: Deep rolling–the past, the present and the future. In: Conference Proceeding ICSP, pp. 144–155 (2005)

    Google Scholar 

  4. Treuting, R., Read, W.: A mechanical determination of biaxial residual stress in sheet materials. J. Appl. Phys. 22(2), 130–134 (1951)

    Article  Google Scholar 

  5. Beghini, M., Bertini, L., Monelli, B., Santus, C., Bandini, M.: Experimental parameter sensitivity analysis of residual stresses induced by deep rolling on 7075–T6 aluminium alloy. Surf. Coat. Technol. 254, 175–186 (2014)

    Article  CAS  Google Scholar 

  6. Alasvand, K., Manouchehrifar, A.: Simulation and research on deep rolling process parameters. ADMT J. 5(5) (2012)

    Google Scholar 

  7. Denkena, B., Grove, T., Breidenstein, B., Abrão, A., Meyer, K.: Correlation between process load and deep rolling induced residual stress profiles. Procedia CIRP 78, 161–165 (2018)

    Article  Google Scholar 

  8. Kämmler, J., Wielki, N., Meyer, D.: Surface integrity after internal load oriented multistage contact deep rolling. Procedia CIRP 71, 490–495 (2018)

    Article  Google Scholar 

  9. Kinner-Becker, T., Sölter, J., Karpuschewski, B.: A simulation-based analysis of internal material loads and material modifications in multi-step deep rolling. Procedia CIRP 87, 515–520 (2020)

    Article  Google Scholar 

  10. Dursun, T., Soutis, C.: Recent developments in advanced aircraft aluminium alloys. Mater. Des. 1980–2015(56), 862–871 (2014)

    Article  Google Scholar 

  11. Schajer, G., Rickert, T.: Incremental computation technique for residual stress calculations using the integral method. Exp. Mech. 51, 1217–1222 (2011). https://doi.org/10.1007/s11340-010-9408-5

    Article  Google Scholar 

  12. Chupakhin, S., Kashaev, N., Huber, N.: Effect of elasto-plastic material behaviour on determination of residual stress profiles using the hole drilling method. J. Strain Anal. Eng. Des. 51(8), 572–581 (2016)

    Article  Google Scholar 

  13. Gariépy, A., Larose, S., Perron, C., Lévesque, M.: Shot peening and peen forming finite element modelling–towards a quantitative method. Int. J. Solids Struct. 48(20), 2859–2877 (2011)

    Article  Google Scholar 

  14. Zhao, H.: A constitutive model for metals over a large range of strain rates identification for mild-steel and aluminium sheets. Mater. Sci. Eng. A 230(1–2), 95–99 (1997)

    Article  Google Scholar 

  15. Klocke, F., Liermann, J.: Roller burnishing of hard turned surfaces. Int. J. Mach. Tools Manuf. 38(5), 419–423 (1998)

    Article  Google Scholar 

  16. Schwab, K., Keller, S., Kashaev, N., Klusemann, B.: Tailoring of residual stresses by specific use of defined prestress during laser shock peening. J. Mater. Process. Technol. 295, 117154 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Lehmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lehmann, J., Keller, S., Esterl, F., Kashaev, N., Klusemann, B., Ben Khalifa, N. (2024). Deep Rolling for Tailoring Residual Stresses of AA2024 Sheet Metals. In: Mocellin, K., Bouchard, PO., Bigot, R., Balan, T. (eds) Proceedings of the 14th International Conference on the Technology of Plasticity - Current Trends in the Technology of Plasticity. ICTP 2023. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-41341-4_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-41341-4_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-41340-7

  • Online ISBN: 978-3-031-41341-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics