Skip to main content

Uric Acid in Inflammation and the Pathogenesis of Atherosclerosis: Lessons for Cholesterol from the Land of Gout

  • Chapter
  • First Online:
Cholesterol Crystals in Atherosclerosis and Other Related Diseases

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 151 Accesses

Abstract

Gout is a chronic metabolic, physicochemical, and inflammatory condition that is typically lifelong, and associated with a high rate of cardiovascular risk above traditional risk factors (Choi and Curhan, Circulation 116(8):894–900, 2007; Kuo et al., Rheumatology (Oxford) 49(1):141–146, 2010). Gout is also similar to non-gout cardiovascular disease, which is increasingly understood to be not only metabolic, but also inflammatory in nature, and to be driven in part by intravascular crystals, most characteristically cholesterol crystals. These similarities mean that gout—whose inflammatory and metabolic processes have been studied for centuries—can provide insight into the processes involved in cardiovascular disease in general, and can offer possibilities for novel approaches to cardiovascular disease management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yu W, Cheng JD. Uric acid and cardiovascular disease: an update from molecular mechanism to clinical perspective. Front Pharmacol. 2020;11:582680. https://doi.org/10.3389/fphar.2020.582680. Epub 2020/12/12. PubMed PMID: 33304270; PubMed Central PMCID: PMCPMC7701250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bardin T, Richette P. Impact of comorbidities on gout and hyperuricaemia: an update on prevalence and treatment options. BMC Med. 2017;15(1):123. https://doi.org/10.1186/s12916-017-0890-9. Epub 2017/07/04. PubMed PMID: 28669352; PubMed Central PMCID: PMCPMC5494879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Abeles AM. Hyperuricemia, gout, and cardiovascular disease: an update. Curr Rheumatol Rep. 2015;17(3):13. Epub 2015/03/06. PubMed PMID: 25740704. https://doi.org/10.1007/s11926-015-0495-2.

    Article  CAS  PubMed  Google Scholar 

  4. Chen-Xu M, Yokose C, Rai SK, Pillinger MH, Choi HK. Contemporary prevalence of gout and hyperuricemia in the united states and decadal trends: the National Health and Nutrition Examination Survey, 2007–2016. Arthritis Rheumatol (Hoboken, NJ). 2019;71(6):991–9. https://doi.org/10.1002/art.40807. Epub 2019/01/09. PubMed PMID: 30618180; PubMed Central PMCID: PMCPMC6536335.

    Article  Google Scholar 

  5. Martillo MA, Nazzal L, Crittenden DB. The crystallization of monosodium urate. Curr Rheumatol Rep. 2014;16(2):400. https://doi.org/10.1007/s11926-013-0400-9. PubMed PMID: 24357445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Singh G, Lingala B, Mithal A. Gout and hyperuricaemia in the USA: prevalence and trends. Rheumatology. 2019;58(12):2177–80. https://doi.org/10.1093/rheumatology/kez196.

    Article  PubMed  Google Scholar 

  7. Keenan RT. The biology of urate. Semin Arthritis Rheum. 2020;50(3s):S2–S10. Epub 2020/07/06. PubMed PMID: 32620198. https://doi.org/10.1016/j.semarthrit.2020.04.007.

    Article  CAS  PubMed  Google Scholar 

  8. Mandal AK, Mount DB. The molecular physiology of uric acid homeostasis. Annu Rev Physiol. 2015;77:323–45. Epub 2014/11/26. PubMed PMID: 25422986. https://doi.org/10.1146/annurev-physiol-021113-170343.

    Article  CAS  PubMed  Google Scholar 

  9. Krishnan E, Lessov-Schlaggar CN, Krasnow RE, Swan GE. Nature versus nurture in gout: a twin study. Am J Med. 2012;125(5):499–504. Epub 2012/03/01. PubMed PMID: 22365026. https://doi.org/10.1016/j.amjmed.2011.11.010.

    Article  PubMed  Google Scholar 

  10. Major TJ, Dalbeth N, Stahl EA, Merriman TR. An update on the genetics of hyperuricaemia and gout. Nat Rev Rheumatol. 2018;14(6):341–53. Epub 2018/05/10. PubMed PMID: 29740155. https://doi.org/10.1038/s41584-018-0004-x.

    Article  CAS  PubMed  Google Scholar 

  11. Méndez-Salazar EO, Martínez-Nava GA. Uric acid extrarenal excretion: the gut microbiome as an evident yet understated factor in gout development. Rheumatol Int. 2022;42(3):403–12. Epub 2021/09/30. PubMed PMID: 34586473. https://doi.org/10.1007/s00296-021-05007-x.

    Article  CAS  PubMed  Google Scholar 

  12. Kuwabara M, Niwa K, Hisatome I, Nakagawa T, Roncal-Jimenez CA, Andres-Hernando A, et al. Asymptomatic hyperuricemia without comorbidities predicts cardiometabolic diseases: five-year japanese cohort study. Hypertension. 2017;69(6):1036–44. https://doi.org/10.1161/hypertensionaha.116.08998. Epub 2017/04/12.PubMed PMID: 28396536; PubMed Central PMCID: PMCPMC5426964.

    Article  CAS  PubMed  Google Scholar 

  13. Treviño-Becerra A. Uric acid: the unknown uremic toxin. Contrib Nephrol. 2018;192:25–33. Epub 2018/02/03. PubMed PMID: 29393086. https://doi.org/10.1159/000484275.

    Article  CAS  PubMed  Google Scholar 

  14. Meijers B, Lowenstein J. The evolving view of uremic toxicity. Toxins (Basel). 2022;14(4):274. Epub 2022/04/22. PubMed PMID: 35448883; PubMed Central PMCID: PMCPMC9031373. https://doi.org/10.3390/toxins14040274.

    Article  CAS  PubMed  Google Scholar 

  15. Gao H, Liu S. Role of uremic toxin indoxyl sulfate in the progression of cardiovascular disease. Life Sci. 2017;185:23–9. Epub 2017/07/30. PubMed PMID: 28754616. https://doi.org/10.1016/j.lfs.2017.07.027.

    Article  CAS  PubMed  Google Scholar 

  16. Sun Y, Johnson C, Zhou J, Wang L, Li YF, Lu Y, et al. Uremic toxins are conditional danger- or homeostasis-associated molecular patterns. Front Biosci (Landmark Ed). 2018;23(2):348–87. https://doi.org/10.2741/4595. Epub 2017/09/21. PubMed PMID: 28930551; PubMed Central PMCID: PMCPMC5627515.

    Article  CAS  PubMed  Google Scholar 

  17. Kang DH, Park SK, Lee IK, Johnson RJ. Uric acid-induced C-reactive protein expression: implication on cell proliferation and nitric oxide production of human vascular cells. J Am Soc Nephrol. 2005;16(12):3553–62. Epub 2005/10/28. PubMed PMID: 16251237. https://doi.org/10.1681/asn.2005050572.

    Article  CAS  PubMed  Google Scholar 

  18. Kang DH, Han L, Ouyang X, Kahn AM, Kanellis J, Li P, et al. Uric acid causes vascular smooth muscle cell proliferation by entering cells via a functional urate transporter. Am J Nephrol. 2005;25(5):425–33. Epub 2005/08/23. PubMed PMID: 16113518. https://doi.org/10.1159/000087713.

    Article  CAS  PubMed  Google Scholar 

  19. Krasnokutsky S, Romero AG, Bang D, Pike VC, Shah B, Igel TF, et al. Impaired arterial responsiveness in untreated gout patients compared with healthy non-gout controls: association with serum urate and C-reactive protein. Clin Rheumatol. 2018;37(7):1903–11. https://doi.org/10.1007/s10067-018-4029-y. Epub 2018/02/17. PubMed PMID: 29450849; PubMed Central PMCID: PMCPMC8476227.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Toprover M, Shah B, Oh C, Igel TF, Romero AG, Pike VC, et al. Initiating guideline-concordant gout treatment improves arterial endothelial function and reduces intercritical inflammation: a prospective observational study. Arthritis Res Ther. 2020;22(1):169. https://doi.org/10.1186/s13075-020-02260-6. Epub 2020/07/13. PubMed PMID: 32653044; PubMed Central PMCID: PMCPMC7353742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sautin YY, Nakagawa T, Zharikov S, Johnson RJ. Adverse effects of the classic antioxidant uric acid in adipocytes: NADPH oxidase-mediated oxidative/nitrosative stress. Am J Physiol Cell Physiol. 2007;293(2):C584–96. Epub 2007/04/13. PubMed PMID: 17428837. https://doi.org/10.1152/ajpcell.00600.2006.

    Article  CAS  PubMed  Google Scholar 

  22. Badii M, Gaal OI, Cleophas MC, Klück V, Davar R, Habibi E, et al. Urate-induced epigenetic modifications in myeloid cells. Arthritis Res Ther. 2021;23(1):202. https://doi.org/10.1186/s13075-021-02580-1. Epub 2021/07/30. PubMed PMID: 34321071; PubMed Central PMCID: PMCPMC8317351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Joosten LAB, Crişan TO, Bjornstad P, Johnson RJ. Asymptomatic hyperuricaemia: a silent activator of the innate immune system. Nat Rev Rheumatol. 2020;16(2):75–86. https://doi.org/10.1038/s41584-019-0334-3. Epub 2019/12/12. PubMed PMID: 31822862; PubMed Central PMCID: PMCPMC7075706.

    Article  CAS  PubMed  Google Scholar 

  24. Tercan H, Riksen NP, Joosten LAB, Netea MG, Bekkering S. Trained immunity: long-term adaptation in innate immune responses. Arterioscler Thromb Vasc Biol. 2021;41(1):55–61. Epub 2020/10/23. PubMed PMID: 33086868. https://doi.org/10.1161/atvbaha.120.314212.

    Article  CAS  PubMed  Google Scholar 

  25. Dalbeth N, Phipps-Green A, Frampton C, Neogi T, Taylor WJ, Merriman TR. Relationship between serum urate concentration and clinically evident incident gout: an individual participant data analysis. Ann Rheum Dis. 2018;77(7):1048–52. Epub 2018/02/22. PubMed PMID: 29463518. https://doi.org/10.1136/annrheumdis-2017-212288.

    Article  CAS  PubMed  Google Scholar 

  26. Yokose C, Chen M, Berhanu A, Pillinger MH, Krasnokutsky S. Gout and osteoarthritis: associations, pathophysiology, and therapeutic implications. Curr Rheumatol Rep. 2016;18(10):65. Epub 2016/10/01. PubMed PMID: 27686950. https://doi.org/10.1007/s11926-016-0613-9.

    Article  CAS  PubMed  Google Scholar 

  27. Neogi T, Krasnokutsky S, Pillinger MH. Urate and osteoarthritis: evidence for a reciprocal relationship. Joint Bone Spine. 2019;86(5):576–82. https://doi.org/10.1016/j.jbspin.2018.11.002. Epub 2018/11/25. PubMed PMID: 30471419; PubMed Central PMCID: PMCPMC6531371.

    Article  CAS  PubMed  Google Scholar 

  28. Kanevets U, Sharma K, Dresser K, Shi Y. A role of IgM antibodies in monosodium urate crystal formation and associated adjuvanticity. J Immunol. 2009;182(4):1912–8. https://doi.org/10.4049/jimmunol.0803777. Epub 2009/02/10. PubMed PMID: 19201844; PubMed Central PMCID: PMCPMC2663336.

    Article  CAS  PubMed  Google Scholar 

  29. Kam M, Perl-Treves D, Caspi D, Addadi L. Antibodies against crystals. FASEB J. 1992;6(8):2608–13. Epub 1992/05/01. PubMed PMID: 1592211. https://doi.org/10.1096/fasebj.6.8.1592211.

    Article  CAS  PubMed  Google Scholar 

  30. Rimer JD, An Z, Zhu Z, Lee MH, Goldfarb DS, Wesson JA, et al. Crystal growth inhibitors for the prevention of L-cystine kidney stones through molecular design. Science. 2010;330(6002):337–41. https://doi.org/10.1126/science.1191968. Epub 2010/10/16. PubMed PMID: 20947757; PubMed Central PMCID: PMCPMC5166609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lee MH, Sahota A, Ward MD, Goldfarb DS. Cystine growth inhibition through molecular mimicry: a new paradigm for the prevention of crystal diseases. Curr Rheumatol Rep. 2015;17(5):33. https://doi.org/10.1007/s11926-015-0510-7. Epub 2015/04/16. PubMed PMID: 25874348; PubMed Central PMCID: PMCPMC4518543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Vedre A, Pathak DR, Crimp M, Lum C, Koochesfahani M, Abela GS. Physical factors that trigger cholesterol crystallization leading to plaque rupture. Atherosclerosis. 2009;203(1):89–96. Epub 2008/08/16. PubMed PMID: 18703195. https://doi.org/10.1016/j.atherosclerosis.2008.06.027.

    Article  CAS  PubMed  Google Scholar 

  33. Duewell P, Kono H, Rayner KJ, Sirois CM, Vladimer G, Bauernfeind FG, et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature. 2010;464(7293):1357–61. https://doi.org/10.1038/nature08938. Epub 2010/04/30. PubMed PMID: 20428172; PubMed Central PMCID: PMCPMC2946640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rock KL, Kataoka H, Lai JJ. Uric acid as a danger signal in gout and its comorbidities. Nat Rev Rheumatol. 2013;9(1):13–23. https://doi.org/10.1038/nrrheum.2012.143. Epub 2012/09/05. PubMed PMID: 22945591; PubMed Central PMCID: PMCPMC3648987.

    Article  CAS  PubMed  Google Scholar 

  35. Kingsbury SR, Conaghan PG, McDermott MF. The role of the NLRP3 inflammasome in gout. J Inflamm Res. 2011;4:39–49. https://doi.org/10.2147/jir.S11330. Epub 2011/11/19. PubMed PMID: 22096368; PubMed Central PMCID: PMCPMC3218743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Swanson KV, Deng M, Ting JP. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol. 2019;19(8):477–89. https://doi.org/10.1038/s41577-019-0165-0. Epub 2019/05/01. PubMed PMID: 31036962; PubMed Central PMCID: PMCPMC7807242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kaneko N, Kurata M, Yamamoto T, Morikawa S, Masumoto J. The role of interleukin-1 in general pathology. Inflamm Regen. 2019;39:12. https://doi.org/10.1186/s41232-019-0101-5. Epub 2019/06/12. PubMed PMID: 31182982; PubMed Central PMCID: PMCPMC6551897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. LA Abbas DK, Pillai S. Basic immunology. 5th ed. Amsterdam: Elsevier; 2016.

    Google Scholar 

  39. Martinon F, Pétrilli V, Mayor A, Tardivel A, Tschopp J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature. 2006;440(7081):237–41. Epub 2006/01/13. PubMed PMID: 16407889. https://doi.org/10.1038/nature04516.

    Article  CAS  PubMed  Google Scholar 

  40. Zhu J, Chu CQ. Cholesterol crystals in rheumatoid bursal fluid. Rheumatology (Oxford). 2022;61(5):e132. Epub 2021/07/16. PubMed PMID: 34264345. https://doi.org/10.1093/rheumatology/keab561.

    Article  PubMed  Google Scholar 

  41. Choi HK, Niu J, Neogi T, Chen CA, Chaisson C, Hunter D, et al. Nocturnal risk of gout attacks. Arthritis Rheumatol (Hoboken, NJ). 2015;67(2):555–62. https://doi.org/10.1002/art.38917. Epub 2014/12/17. PubMed PMID: 25504842; PubMed Central PMCID: PMCPMC4360969.

    Article  Google Scholar 

  42. Muller JE, Tofler GH, Stone PH. Circadian variation and triggers of onset of acute cardiovascular disease. Circulation. 1989;79(4):733–43. Epub 1989/04/01. PubMed PMID: 2647318. https://doi.org/10.1161/01.cir.79.4.733.

    Article  CAS  PubMed  Google Scholar 

  43. Howard RG, Pillinger MH, Gyftopoulos S, Thiele RG, Swearingen CJ, Samuels J. Reproducibility of musculoskeletal ultrasound for determining monosodium urate deposition: concordance between readers. Arthritis Care Res (Hoboken). 2011;63(10):1456–62. https://doi.org/10.1002/acr.20527. Epub 2011/06/28. PubMed PMID: 21702086; PubMed Central PMCID: PMCPMC3183112.

    Article  CAS  PubMed  Google Scholar 

  44. Dalbeth N, House ME, Aati O, Tan P, Franklin C, Horne A, et al. Urate crystal deposition in asymptomatic hyperuricaemia and symptomatic gout: a dual energy CT study. Ann Rheum Dis. 2015;74(5):908–11. https://doi.org/10.1136/annrheumdis-2014-206397. PubMed PMID: 25637002.

    Article  PubMed  Google Scholar 

  45. Zaninelli TH, Fattori V, Saraiva-Santos T, Badaro-Garcia S, Staurengo-Ferrari L, Andrade KC, et al. RvD1 disrupts nociceptor neuron and macrophage activation and neuroimmune communication, reducing pain and inflammation in gouty arthritis in mice. Br J Pharmacol. 2022;179:4500. https://doi.org/10.1111/bph.15897. Epub 2022/06/19. PubMed PMID: 35716378.

    Article  CAS  PubMed  Google Scholar 

  46. Scher JU, Pillinger MH. The anti-inflammatory effects of prostaglandins. J Investig Med. 2009;57(6):703–8. Epub 2009/02/26. PubMed PMID: 19240648. https://doi.org/10.2310/JIM.0b013e31819aaa76.

    Article  CAS  PubMed  Google Scholar 

  47. Bannenberg G, Serhan CN. Specialized pro-resolving lipid mediators in the inflammatory response: an update. Biochim Biophys Acta. 2010;1801(12):1260–73. https://doi.org/10.1016/j.bbalip.2010.08.002. Epub 2010/08/17. PubMed PMID: 20708099; PubMed Central PMCID: PMCPMC2994245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang M, Ishikawa T, Lai Y, Nallapothula D, Singh RR. Diverse roles of NETosis in the pathogenesis of lupus. Front Immunol. 2022;13:895216. https://doi.org/10.3389/fimmu.2022.895216. Epub 2022/06/11. PubMed PMID: 35686129; PubMed Central PMCID: PMCPMC9170953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Schauer C, Janko C, Munoz LE, Zhao Y, Kienhöfer D, Frey B, et al. Aggregated neutrophil extracellular traps limit inflammation by degrading cytokines and chemokines. Nat Med. 2014;20(5):511–7. Epub 2014/05/03. PubMed PMID: 24784231. https://doi.org/10.1038/nm.3547.

    Article  CAS  PubMed  Google Scholar 

  50. Quillard T, Araújo HA, Franck G, Shvartz E, Sukhova G, Libby P. TLR2 and neutrophils potentiate endothelial stress, apoptosis and detachment: implications for superficial erosion. Eur Heart J. 2015;36(22):1394–404. https://doi.org/10.1093/eurheartj/ehv044. Epub 2015/03/11. PubMed PMID: 25755115; PubMed Central PMCID: PMCPMC4458287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Döring Y, Soehnlein O, Weber C. Neutrophils cast NETs in atherosclerosis: employing peptidylarginine deiminase as a therapeutic target. Circ Res. 2014;114(6):931–4. Epub 2014/03/15. PubMed PMID: 24625721. https://doi.org/10.1161/circresaha.114.303479.

    Article  PubMed  Google Scholar 

  52. Mangold A, Alias S, Scherz T, Hofbauer M, Jakowitsch J, Panzenböck A, et al. Coronary neutrophil extracellular trap burden and deoxyribonuclease activity in ST-elevation acute coronary syndrome are predictors of ST-segment resolution and infarct size. Circ Res. 2015;116(7):1182–92. Epub 2014/12/31. PubMed PMID: 25547404. https://doi.org/10.1161/circresaha.116.304944.

    Article  CAS  PubMed  Google Scholar 

  53. Chhana A, Dalbeth N. The gouty tophus: a review. Curr Rheumatol Rep. 2015;17(3):19. https://doi.org/10.1007/s11926-014-0492-x. PubMed PMID: 25761926.

    Article  CAS  PubMed  Google Scholar 

  54. Narang RK, Dalbeth N. Pathophysiology of gout. Semin Nephrol. 2020;40(6):550–63. https://doi.org/10.1016/j.semnephrol.2020.12.001.

    Article  CAS  PubMed  Google Scholar 

  55. Janoudi A, Shamoun FE, Kalavakunta JK, Abela GS. Cholesterol crystal induced arterial inflammation and destabilization of atherosclerotic plaque. Eur Heart J. 2016;37(25):1959–67. Epub 2015/12/26. PubMed PMID: 26705388. https://doi.org/10.1093/eurheartj/ehv653.

    Article  CAS  PubMed  Google Scholar 

  56. Palmer DG, Hogg N, Denholm I, Allen CA, Highton J, Hessian PA. Comparison of phenotype expression by mononuclear phagocytes within subcutaneous gouty tophi and rheumatoid nodules. Rheumatol Int. 1987;7(5):187–93. Epub 1987/01/01. PubMed PMID: 3321380. https://doi.org/10.1007/bf00541376.

    Article  CAS  PubMed  Google Scholar 

  57. Dalbeth N, Pool B, Gamble GD, Smith T, Callon KE, McQueen FM, et al. Cellular characterization of the gouty tophus: a quantitative analysis. Arthritis Rheum. 2010;62(5):1549–56. Epub 2010/02/05. PubMed PMID: 20131281. https://doi.org/10.1002/art.27356.

    Article  CAS  PubMed  Google Scholar 

  58. Lee SJ, Nam KI, Jin HM, Cho YN, Lee SE, Kim TJ, et al. Bone destruction by receptor activator of nuclear factor κB ligand-expressing T cells in chronic gouty arthritis. Arthritis Res Ther. 2011;13(5):R164. https://doi.org/10.1186/ar3483. Epub 2011/10/14. PubMed PMID: 21992185; PubMed Central PMCID: PMCPMC3308097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cavalcanti NG, Marques CD, Lins ELTU, Pereira MC, Rêgo MJ, Duarte AL, et al. Cytokine profile in gout: inflammation driven by IL-6 and IL-18? Immunol Investig. 2016;45(5):383–95. Epub 2016/05/25. PubMed PMID: 27219123. https://doi.org/10.3109/08820139.2016.1153651.

    Article  CAS  Google Scholar 

  60. Heinrich PC, Castell JV, Andus T. Interleukin-6 and the acute phase response. Biochem J. 1990;265(3):621–36. https://doi.org/10.1042/bj2650621. Epub 1990/02/01. PubMed PMID: 1689567; PubMed Central PMCID: PMCPMC1133681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ridker PM, Rane M. Interleukin-6 signaling and anti-Interleukin-6 therapeutics in cardiovascular disease. Circ Res. 2021;128(11):1728–46. Epub 2021/05/18. PubMed PMID: 33998272. https://doi.org/10.1161/circresaha.121.319077.

    Article  CAS  PubMed  Google Scholar 

  62. Ridker PM, Libby P, MacFadyen JG, Thuren T, Ballantyne C, Fonseca F, et al. Modulation of the interleukin-6 signalling pathway and incidence rates of atherosclerotic events and all-cause mortality: analyses from the Canakinumab Anti-Inflammatory Thrombosis Outcomes Study (CANTOS). Eur Heart J. 2018;39(38):3499–507. https://doi.org/10.1093/eurheartj/ehy310.

    Article  CAS  PubMed  Google Scholar 

  63. Ding L, Li H, Sun B, Wang T, Meng S, Huang Q, et al. Elevated interleukin-37 associated with tophus and pro-inflammatory mediators in Chinese gout patients. Cytokine. 2021;141:155468. Epub 2021/03/02. PubMed PMID: 33647713. https://doi.org/10.1016/j.cyto.2021.155468.

    Article  CAS  PubMed  Google Scholar 

  64. Dalbeth N, Gosling AL, Gaffo A, Abhishek A. Gout. Lancet (London, England). 2021;397(10287):1843–55. Epub 2021/04/03. PubMed PMID: 33798500. https://doi.org/10.1016/s0140-6736(21)00569-9.

    Article  CAS  PubMed  Google Scholar 

  65. Toprover M, Krasnokutsky S, Pillinger MH. Gout in the spine: imaging, diagnosis, and outcomes. Curr Rheumatol Rep. 2015;17(12):70. Epub 2015/10/23. PubMed PMID: 26490179. https://doi.org/10.1007/s11926-015-0547-7.

    Article  PubMed  Google Scholar 

  66. Toprover M, Mechlin M, Slobodnick A, Pike VC, Oh C, Davis C, et al. Gout and serum urate levels are associated with lumbar spine monosodium urate deposition and chronic low back pain: a dual-energy CT study [Abstract]. Arthritis Rheum. 2020;2020.

    Google Scholar 

  67. Spek A, Strittmatter F, Graser A, Kufer P, Stief C, Staehler M. Dual energy can accurately differentiate uric acid-containing urinary calculi from calcium stones. World J Urol. 2016;34(9):1297–302. Epub 2016/01/11. PubMed PMID: 26749082. https://doi.org/10.1007/s00345-015-1756-4.

    Article  CAS  PubMed  Google Scholar 

  68. Khanna P, Johnson RJ, Marder B, LaMoreaux B, Kumar A. Systemic urate deposition: an unrecognized complication of gout? J Clin Med. 2020;9(10):3204. https://doi.org/10.3390/jcm9103204. Epub 2020/10/08. PubMed PMID: 33023045; PubMed Central PMCID: PMCPMC7600842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ayoub I, Almaani S, Brodsky S, Nadasdy T, Prosek J, Hebert L, et al. Revisiting medullary tophi: a link between uric acid and progressive chronic kidney disease? Clin Nephrol. 2016;85(2):109–13. Epub 2015/12/29. Epub 2020/10/08. https://doi.org/10.5414/cn108663.x.

    Article  CAS  PubMed  Google Scholar 

  70. Park JJ, Roudier MP, Soman D, Mokadam NA, Simkin PA. Prevalence of birefringent crystals in cardiac and prostatic tissues, an observational study. BMJ Open. 2014;4(7):e005308. https://doi.org/10.1136/bmjopen-2014-005308. Epub 2014/07/18. PubMed PMID: 25031195; PubMed Central PMCID: PMCPMC4120371.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Katoch P, Trier-Mørch S, Vyberg M. Small intestinal tophus mimicking tumor. Hum Pathol Case Rep. 2014;1(1):2–5. https://doi.org/10.1016/j.ehpc.2014.05.001.

    Article  Google Scholar 

  72. Moiseev V, Shavarov A, Varshavsky V, Reshetin V. Multiple pseudotumorous crystalline deposits in small intestine, mesentery and lungs in terminal heart failure patent without gouty arthritis. Eur J Heart Fail. 2016.

    Google Scholar 

  73. Sharon Y, Schlesinger N. Beyond joints: a review of ocular abnormalities in gout and hyperuricemia. Curr Rheumatol Rep. 2016;18(6):37. Epub 2016/05/04. PubMed PMID: 27138165. https://doi.org/10.1007/s11926-016-0586-8.

    Article  CAS  PubMed  Google Scholar 

  74. Sharifabad MA, Tzeng J, Gharibshahi S. Mammary gouty tophus: a case report and review of the literature. Breast J. 2006;12(3):263–5. Epub 2006/05/11. PubMed PMID: 16684326. https://doi.org/10.1111/j.1075-122X.2006.00252.x.

    Article  PubMed  Google Scholar 

  75. Disveld IJM, Fransen J, Rongen GA, Kienhorst LBE, Zoakman S, Janssens H, et al. Crystal-proven gout and characteristic gout severity factors are associated with cardiovascular disease. J Rheumatol. 2018;45(6):858–63. Epub 2018/04/17. PubMed PMID: 29657151. https://doi.org/10.3899/jrheum.170555.

    Article  CAS  PubMed  Google Scholar 

  76. Freedman DS, Williamson DF, Gunter EW, Byers T. Relation of serum uric acid to mortality and ischemic heart disease. The NHANES I Epidemiologic Follow-up Study. Am J Epidemiol. 1995;141(7):637–44. Epub 1995/04/01. PubMed PMID: 7702038. https://doi.org/10.1093/oxfordjournals.aje.a117479.

    Article  CAS  PubMed  Google Scholar 

  77. Braga F, Pasqualetti S, Ferraro S, Panteghini M. Hyperuricemia as risk factor for coronary heart disease incidence and mortality in the general population: a systematic review and meta-analysis. Clin Chem Lab Med. 2016;54(1):7–15. Epub 2015/09/10. PubMed PMID: 26351943. https://doi.org/10.1515/cclm-2015-0523.

    Article  CAS  PubMed  Google Scholar 

  78. Choi HK, Curhan G. Independent impact of gout on mortality and risk for coronary heart disease. Circulation. 2007;116(8):894–900. Epub 2007/08/19. PubMed PMID: 17698728. https://doi.org/10.1161/circulationaha.107.703389.

    Article  PubMed  Google Scholar 

  79. Christensen JL, Yu W, Tan S, Chu A, Vargas F, Assali M, et al. Gout is associated with increased coronary artery calcification and adverse cardiovascular outcomes. JACC Cardiovasc Imaging. 2019. Epub 2019/12/23. PubMed PMID: 31864984;13:884. https://doi.org/10.1016/j.jcmg.2019.10.019.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Keenan RT, O'Brien WR, Lee KH, Crittenden DB, Fisher MC, Goldfarb DS, et al. Prevalence of contraindications and prescription of pharmacologic therapies for gout. Am J Med. 2011;124(2):155–63. Epub 2011/02/08. PubMed PMID: 21295195. https://doi.org/10.1016/j.amjmed.2010.09.012.

    Article  PubMed  Google Scholar 

  81. Zhu Y, Pandya BJ, Choi HK. Comorbidities of gout and hyperuricemia in the US general population: NHANES 2007-2008. Am J Med. 2012;125(7):679–87.e1. Epub 2012/05/26. PubMed PMID: 22626509. https://doi.org/10.1016/j.amjmed.2011.09.033.

    Article  PubMed  Google Scholar 

  82. Yoo HG, Lee SI, Chae HJ, Park SJ, Lee YC, Yoo WH. Prevalence of insulin resistance and metabolic syndrome in patients with gouty arthritis. Rheumatol Int. 2011;31(4):485–91. Epub 2010/01/22. PubMed PMID: 20091036. https://doi.org/10.1007/s00296-009-1304-x.

    Article  CAS  PubMed  Google Scholar 

  83. Wang Y, Viollet B, Terkeltaub R, Liu-Bryan R. AMP-activated protein kinase suppresses urate crystal-induced inflammation and transduces colchicine effects in macrophages. Ann Rheum Dis. 2016;75(1):286–94. https://doi.org/10.1136/annrheumdis-2014-206074. Epub 2014/11/02. PubMed PMID: 25362043; PubMed Central PMCID: PMCPMC4417082.

    Article  CAS  PubMed  Google Scholar 

  84. Sun HL, Pei D, Lue KH, Chen YL. Uric acid levels can predict metabolic syndrome and hypertension in adolescents: a 10-year longitudinal study. PLoS One. 2015;10(11):e0143786. https://doi.org/10.1371/journal.pone.0143786. Epub 2015/12/01. PubMed PMID: 26618358; PubMed Central PMCID: PMCPMC4664290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Grayson PC, Kim SY, LaValley M, Choi HK. Hyperuricemia and incident hypertension: a systematic review and meta-analysis. Arthritis Care Res (Hoboken). 2011;63(1):102–10. https://doi.org/10.1002/acr.20344. Epub 2010/09/09. PubMed PMID: 20824805; PubMed Central PMCID: PMCPMC3016454.

    Article  CAS  PubMed  Google Scholar 

  86. Feig DI, Soletsky B, Johnson RJ. Effect of allopurinol on blood pressure of adolescents with newly diagnosed essential hypertension: a randomized trial. JAMA. 2008;300(8):924–32. https://doi.org/10.1001/jama.300.8.924. Epub 2008/08/30. PubMed PMID: 18728266; PubMed Central PMCID: PMCPMC2684336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gaffo AL, Calhoun DA, Rahn EJ, Oparil S, Li P, Dudenbostel T, et al. Effect of serum urate lowering with allopurinol on blood pressure in young adults: a randomized, controlled, crossover trial. Arthritis Rheumatol (Hoboken, NJ). 2021;73(8):1514–22. Epub 2021/03/30. PubMed PMID: 33779064. https://doi.org/10.1002/art.41749.

    Article  CAS  Google Scholar 

  88. Johnson RJ, Choi HK, Yeo AE, Lipsky PE. Pegloticase treatment significantly decreases blood pressure in patients with chronic gout. Hypertension. 2019;74(1):95–101. Epub 2019/05/14. PubMed PMID: 31079535. https://doi.org/10.1161/hypertensionaha.119.12727.

    Article  CAS  PubMed  Google Scholar 

  89. Abdellatif A, Zhao L, Cherny K, Marder B, Scandling J, Saag K. POS1160 protect: PEGLOTICASE treatment for uncontrolled gout in kidney transplanted patients; results from a phase 4 trial. Ann Rheum Dis. 2022;81(Suppl 1):908–9. https://doi.org/10.1136/annrheumdis-2022-eular.2175.

    Article  Google Scholar 

  90. Hench P, Darnall C. A clinic on acute, old-fashioned gout; with special reference to its inciting factors. Med Clin North Am. 1933;16:1371–400.

    Google Scholar 

  91. Klauser AS, Halpern EJ, Strobl S, Gruber J, Feuchtner G, Bellmann-Weiler R, et al. Dual-energy computed tomography detection of cardiovascular monosodium urate deposits in patients with gout. JAMA Cardiol. 2019;4(10):1019–28. https://doi.org/10.1001/jamacardio.2019.3201. PubMed PMID: 31509156.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Pund EE Jr, Hawley RL, Mc GH, Blount SG Jr. Gouty heart. N Engl J Med. 1960;263:835–8. Epub 1960/10/27. PubMed PMID: 13738492. https://doi.org/10.1056/nejm196010272631705.

    Article  PubMed  Google Scholar 

  93. Patetsios P, Song M, Shutze WP, Pappas C, Rodino W, Ramirez JA, et al. Identification of uric acid and xanthine oxidase in atherosclerotic plaque. Am J Cardiol. 2001;88(2):188–91, , a6. Epub 2001/07/13. PubMed PMID: 11448423. https://doi.org/10.1016/s0002-9149(01)01621-6.

    Article  CAS  PubMed  Google Scholar 

  94. Patetsios P, Rodino W, Wisselink W, Bryan D, Kirwin JD, Panetta TF. Identification of uric acid in aortic aneurysms and atherosclerotic artery. Ann N Y Acad Sci. 1996;800:243–5. Epub 1996/11/18. PubMed PMID: 8959001. https://doi.org/10.1111/j.1749-6632.1996.tb33318.x.

    Article  CAS  PubMed  Google Scholar 

  95. Nardi V, Franchi F, Prasad M, Fatica EM, Alexander MP, Bois MC, et al. Uric acid expression in carotid atherosclerotic plaque and serum uric acid are associated with cerebrovascular events. Hypertension. 2022;79(8):1814–23. Epub 2022/06/04. PubMed PMID: 35656807. https://doi.org/10.1161/hypertensionaha.122.19247.

    Article  CAS  PubMed  Google Scholar 

  96. Feuchtner GM, Plank F, Beyer C, Schwabl C, Held J, Bellmann-Weiler R, et al. Monosodium urate crystal deposition in coronary artery plaque by 128-slice dual-energy computed tomography: an ex vivo phantom and in vivo study. J Comput Assist Tomogr. 2021;45(6):856–62. Epub 2021/09/02. PubMed PMID: 34469909. https://doi.org/10.1097/rct.0000000000001222.

    Article  PubMed  Google Scholar 

  97. Chang K, Yokose C, Tenner C, Oh C, Donnino R, Choy-Shan A, et al. Association between gout and aortic stenosis. Am J Med. 2017;130(2):230.e1–8. https://doi.org/10.1016/j.amjmed.2016.09.005. Epub 2016/10/11. PubMed PMID: 27720853; PubMed Central PMCID: PMCPMC5357081.

    Article  PubMed  Google Scholar 

  98. Adelsheimer A, Shah B, Choy-Shan A, Tenner CT, Lorin JD, Smilowitz NR, et al. Gout and progression of aortic stenosis. Am J Med. 2020;133(9):1095–1100.e1. https://doi.org/10.1016/j.amjmed.2020.01.019. Epub 2020/02/23. PubMed PMID: 32081657; PubMed Central PMCID: PMCPMC7429243.

    Article  PubMed  PubMed Central  Google Scholar 

  99. El-Khatib LA, De Feijter-Rupp H, Janoudi A, Fry L, Kehdi M, Abela GS. Cholesterol induced heart valve inflammation and injury: efficacy of cholesterol lowering treatment. Open Heart. 2020;7(2):e001274. https://doi.org/10.1136/openhrt-2020-001274. Epub 2020/08/05. PubMed PMID: 32747455; PubMed Central PMCID: PMCPMC7402193.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Dasgeb B, Kornreich D, McGuinn K, Okon L, Brownell I, Sackett DL. Colchicine: an ancient drug with novel applications. Br J Dermatol. 2018;178(2):350–6. https://doi.org/10.1111/bjd.15896. Epub 2017/08/24. PubMed PMID: 28832953; PubMed Central PMCID: PMCPMC5812812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wallace SL. In: Copeman, WSC, editor. A short history of the gout and the rheumatic diseases. Berkeley: University of California Press; 1964, 236 pp. Arthritis Rheumatism. 1964;7(6):722–3. https://doi.org/10.1002/art.1780070613.

  102. Bauriedel G, Heimerl J, Beinert T, Welsch U, Höfling B. Colchicine antagonizes the activity of human smooth muscle cells cultivated from arteriosclerotic lesions after atherectomy. Coron Artery Dis. 1994;5(6):531–9. Epub 1994/06/01. PubMed PMID: 7952413.

    CAS  PubMed  Google Scholar 

  103. Nuki G. Colchicine: its mechanism of action and efficacy in crystal-induced inflammation. Curr Rheumatol Rep. 2008;10(3):218–27. Epub 2008/07/22. PubMed PMID: 18638431. https://doi.org/10.1007/s11926-008-0036-3.

    Article  CAS  PubMed  Google Scholar 

  104. Caner JE. Colchicine inhibition of chemotaxis. Arthritis Rheum. 1965;8(5):757–64. Epub 1965/10/01. PubMed PMID: 5859551. https://doi.org/10.1002/art.1780080438.

    Article  CAS  PubMed  Google Scholar 

  105. Cronstein BN, Molad Y, Reibman J, Balakhane E, Levin RI, Weissmann G. Colchicine alters the quantitative and qualitative display of selectins on endothelial cells and neutrophils. J Clin Invest. 1995;96(2):994–1002. https://doi.org/10.1172/jci118147. Epub 1995/08/01. PubMed PMID: 7543498; PubMed Central PMCID: PMCPMC185287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 2017;377(12):1119–31. Epub 2017/08/29. PubMed PMID: 28845751. https://doi.org/10.1056/NEJMoa1707914.

    Article  CAS  PubMed  Google Scholar 

  107. Abu-Fanne R, Stepanova V, Litvinov RI, Abdeen S, Bdeir K, Higazi M, et al. Neutrophil α-defensins promote thrombosis in vivo by altering fibrin formation, structure, and stability. Blood. 2019;133(5):481–93. https://doi.org/10.1182/blood-2018-07-861237. Epub 2018/11/18. PubMed PMID: 30442678; PubMed Central PMCID: PMCPMC6356988 interests.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Shah B, Allen N, Harchandani B, Pillinger M, Katz S, Sedlis SP, et al. Effect of colchicine on platelet-platelet and platelet-leukocyte interactions: a pilot study in healthy subjects. Inflammation. 2016;39(1):182–9. https://doi.org/10.1007/s10753-015-0237-7. Epub 2015/09/01. PubMed PMID: 26318864; PubMed Central PMCID: PMCPMC4753094.

    Article  CAS  PubMed  Google Scholar 

  109. Nidorf SM, Fiolet A, Abela GS. Viewing atherosclerosis through a crystal lens: how the evolving structure of cholesterol crystals in atherosclerotic plaque alters its stability. J Clin Lipidol. 2020;14(5):619–30. Epub 2020/08/15. PubMed PMID: 32792218. https://doi.org/10.1016/j.jacl.2020.07.003.

    Article  PubMed  Google Scholar 

  110. Strandberg TE, Kovanen PT. Coronary artery disease: ‘gout’ in the artery? Eur Heart J. 2021;42(28):2761–4. https://doi.org/10.1093/eurheartj/ehab276. Epub 2021/05/30. PubMed PMID: 34050656; PubMed Central PMCID: PMCPMC8845033.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Ridker PM, MacFadyen JG, Everett BM, Libby P, Thuren T, Glynn RJ. Relationship of C-reactive protein reduction to cardiovascular event reduction following treatment with canakinumab: a secondary analysis from the CANTOS randomised controlled trial. Lancet (London, England). 2018;391(10118):319–28. Epub 2017/11/18. PubMed PMID: 29146124. https://doi.org/10.1016/s0140-6736(17)32814-3.

    Article  CAS  PubMed  Google Scholar 

  112. Solomon DH, Glynn RJ, MacFadyen JG, Libby P, Thuren T, Everett BM, et al. Relationship of interleukin-1β blockade with incident gout and serum uric acid levels: exploratory analysis of a randomized controlled trial. Ann Intern Med. 2018;169(8):535–42. Epub 2018/09/23. PubMed PMID: 30242335. https://doi.org/10.7326/m18-1167.

    Article  PubMed  Google Scholar 

  113. Nidorf M, Thompson PL. Effect of colchicine (0.5 mg twice daily) on high-sensitivity C-reactive protein independent of aspirin and atorvastatin in patients with stable coronary artery disease. Am J Cardiol. 2007;99(6):805–7. Epub 2007/03/14. PubMed PMID: 17350370. https://doi.org/10.1016/j.amjcard.2006.10.039.

    Article  CAS  PubMed  Google Scholar 

  114. Langevitz P, Livneh A, Neumann L, Buskila D, Shemer J, Amolsky D, et al. Prevalence of ischemic heart disease in patients with familial Mediterranean fever. Isr Med Assoc J. 2001;3(1):9–12. Epub 2001/05/10. PubMed PMID: 11344818.

    CAS  PubMed  Google Scholar 

  115. Shah B, Toprover M, Crittenden DB, Jeurling S, Pike VC, Krasnokutsky S, et al. Colchicine use and incident coronary artery disease in male patients with gout. Can J Cardiol. 2020;36(11):1722–8. https://doi.org/10.1016/j.cjca.2020.05.026. Epub 2020/05/27. PubMed PMID: 32454073; PubMed Central PMCID: PMCPMC8464652.

    Article  PubMed  Google Scholar 

  116. Crittenden DB, Lehmann RA, Schneck L, Keenan RT, Shah B, Greenberg JD, et al. Colchicine use is associated with decreased prevalence of myocardial infarction in patients with gout. J Rheumatol. 2012;39(7):1458–64. https://doi.org/10.3899/jrheum.111533. Epub 2012/06/05. PubMed PMID: 22660810; PubMed Central PMCID: PMCPMC3733459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Solomon DH, Liu CC, Kuo IH, Zak A, Kim SC. Effects of colchicine on risk of cardiovascular events and mortality among patients with gout: a cohort study using electronic medical records linked with Medicare claims. Ann Rheum Dis. 2016;75(9):1674–9. https://doi.org/10.1136/annrheumdis-2015-207984. Epub 2015/11/20. PubMed PMID: 26582823; PubMed Central PMCID: PMCPMC5049504.

    Article  CAS  PubMed  Google Scholar 

  118. Nidorf SM, Eikelboom JW, Budgeon CA, Thompson PL. Low-dose colchicine for secondary prevention of cardiovascular disease. J Am Coll Cardiol. 2013;61(4):404–10. Epub 2012/12/26. PubMed PMID: 23265346. https://doi.org/10.1016/j.jacc.2012.10.027.

    Article  CAS  PubMed  Google Scholar 

  119. Nidorf SM, Fiolet ATL, Mosterd A, Eikelboom JW, Schut A, Opstal TSJ, et al. Colchicine in patients with chronic coronary disease. N Engl J Med. 2020;383(19):1838–47. Epub 2020/09/01. PubMed PMID: 32865380. https://doi.org/10.1056/NEJMoa2021372.

    Article  CAS  PubMed  Google Scholar 

  120. Mastrocola R, Penna C, Tullio F, Femminò S, Nigro D, Chiazza F, et al. Pharmacological inhibition of NLRP3 inflammasome attenuates myocardial ischemia/reperfusion injury by activation of RISK and mitochondrial pathways. Oxid Med Cell Longev. 2016;2016:5271251. https://doi.org/10.1155/2016/5271251. Epub 2017/01/06. PubMed PMID: 28053692; PubMed Central PMCID: PMCPMC5178375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Deftereos S, Giannopoulos G, Angelidis C, Alexopoulos N, Filippatos G, Papoutsidakis N, et al. Anti-inflammatory treatment with colchicine in acute myocardial infarction: a pilot study. Circulation. 2015;132(15):1395–403. Epub 2015/08/13. PubMed PMID: 26265659. https://doi.org/10.1161/circulationaha.115.017611.

    Article  CAS  PubMed  Google Scholar 

  122. Hennessy T, Soh L, Bowman M, Kurup R, Schultz C, Patel S, et al. The low dose colchicine after myocardial infarction (LoDoCo-MI) study: a pilot randomized placebo controlled trial of colchicine following acute myocardial infarction. Am Heart J. 2019;215:62–9. Epub 2019/07/10. PubMed PMID: 26265659. https://doi.org/10.1016/j.ahj.2019.06.003.x.

    Article  CAS  PubMed  Google Scholar 

  123. Mewton N, Roubille F, Bresson D, Prieur C, Bouleti C, Bochaton T, et al. Effect of colchicine on myocardial injury in acute myocardial infarction. Circulation. 2021;144(11):859–69. https://doi.org/10.1161/circulationaha.121.056177. Epub 2021/08/24. PubMed PMID: 34420373; PubMed Central PMCID: PMCPMC8462445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Tong DC, Quinn S, Nasis A, Hiew C, Roberts-Thomson P, Adams H, et al. Colchicine in patients with acute coronary syndrome: the Australian COPS Randomized Clinical Trial. Circulation. 2020;142(20):1890–900. Epub 2020/08/31. PubMed PMID: 32862667. https://doi.org/10.1161/circulationaha.120.050771.

    Article  PubMed  Google Scholar 

  125. Tardif JC, Kouz S, Waters DD, Bertrand OF, Diaz R, Maggioni AP, et al. Efficacy and safety of low-dose colchicine after myocardial infarction. N Engl J Med. 2019;381(26):2497–505. Epub 2019/11/17. PubMed PMID: 31733140. https://doi.org/10.1056/NEJMoa1912388.

    Article  CAS  PubMed  Google Scholar 

  126. Visseren FLJ, Mach F, Smulders YM, Carballo D, Koskinas KC, Bäck M, et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J. 2021;42(34):3227–337. Epub 2021/08/31. PubMed PMID: 34458905. https://doi.org/10.1093/eurheartj/ehab484.

    Article  PubMed  Google Scholar 

  127. FitzGerald JD, Dalbeth N, Mikuls T, Brignardello-Petersen R, Guyatt G, Abeles AM, et al. 2020 American College of Rheumatology Guideline for the Management of Gout. Arthritis Care Res (Hoboken). 2020;72(6):744–60. Epub 2020/05/12. PubMed PMID: 32391934. https://doi.org/10.1002/acr.24180.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael H. Pillinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shah, B., Ho, G., Pruthi, S., Toprover, M., Pillinger, M.H. (2023). Uric Acid in Inflammation and the Pathogenesis of Atherosclerosis: Lessons for Cholesterol from the Land of Gout. In: Abela, G.S., Nidorf, S.M. (eds) Cholesterol Crystals in Atherosclerosis and Other Related Diseases. Contemporary Cardiology. Humana, Cham. https://doi.org/10.1007/978-3-031-41192-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-41192-2_18

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-031-41191-5

  • Online ISBN: 978-3-031-41192-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics