Skip to main content

Secret Key Recovery Attack on Masked and Shuffled Implementations of CRYSTALS-Kyber and Saber

  • Conference paper
  • First Online:
Applied Cryptography and Network Security Workshops (ACNS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13907))

Included in the following conference series:

Abstract

Shuffling is a well-known countermeasure against side-channel attacks. It typically uses the Fisher-Yates (FY) algorithm to generate a random permutation which is then utilized as the loop iterator to index the processing of the variables inside the loop. The processing order is scrambled as a result, making side-channel attacks more difficult. Recently, a side-channel attack on a masked and shuffled implementation of Saber requiring 61,680 power traces to extract the long-term secret key was reported. In this paper, we present an attack that can recover the long-term secret key of Saber from 4,608 traces. The key idea behind the 13-fold improvement is to recover FY indexes directly, rather than by extracting the message Hamming weight and bit flipping, as in the previous attack. We capture a power trace during the execution of the decryption algorithm for a given ciphertext, recover FY indexes 0 and 255, and extract the corresponding two message bits. Then, we modify the ciphertext to cyclically rotate the message, capture a power trace, and extract the next two message bits with FY indexes 0 and 255. In this way, all message bits can be extracted. By recovering messages contained in \(k*l\) chosen ciphertexts constructed using a new method based on error-correcting codes of length l, where k is the module rank, we recover the long-term secret key. To demonstrate the generality of the presented approach, we also recover the secret key from a masked and shuffled implementation of CRYSTALS-Kyber, which NIST recently selected as a new public-key encryption and key-establishment algorithm to be standardized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    ChipWhisperer-Pro has an option of streaming, however, streaming can be used only at a maximum of 10 MHz sampling frequency.

  2. 2.

    In the notation [lwd], l is the codeword length, w is the dataword length, and d is the code distance. A code distance is the minimum Hamming distance between any two codewords of the code.

References

  1. Announcing the commercial national security algorithm suite 2.0. National Security Agency, U.S Department of Defense (2022). https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF

  2. Agrawal, Dakshi, Archambeault, Bruce, Rao, Josyula R.., Rohatgi, Pankaj: The EM side—channel(s). In: Kaliski, Burton S.., Koç, çetin K.., Paar, Christof (eds.) CHES 2002. LNCS, vol. 2523, pp. 29–45. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5_4

    Chapter  Google Scholar 

  3. Azouaoui, M., et al.: Post-quantum authenticated encryption against chosen-ciphertext side-channel attacks. IACR Trans. Cryptogr. Hardw. Embed. Syst. 372–396 (2022). https://doi.org/10.46586/tches.v2022.i4.372-396

  4. Beirendonck, M.V., et al.: A side-channel-resistant implementation of saber. J. Emerg. Technol. Comput. Syst. 17(2) (2021). https://doi.org/10.1145/3429983

  5. Bhasin, S., et al.: Attacking and defending masked polynomial comparison for lattice-based cryptography. IACR Trans. Cryptogr. Hardw. Embed. Syst. 334–359 (2021). https://doi.org/10.46586/tches.v2021.i3.334-359

  6. Bos, J.W., et al.: Masking kyber: first-and higher-order implementations. IACR Trans. Cryptogr. Hardw. Embed. Syst 2021(4), 173–214 (2021). https://doi.org/10.46586/tches.v2021.i4.173-214

    Article  Google Scholar 

  7. Chari, Suresh, Jutla, Charanjit S.., Rao, Josyula R.., Rohatgi, Pankaj: Towards sound approaches to counteract power-analysis attacks. In: Wiener, Michael (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 398–412. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_26

    Chapter  Google Scholar 

  8. Chen, C., et al.: NTRU algorithm specifications and supporting documentation (2020). https://csrc.nist.gov/projects/postquantum-cryptography/round-3-submissions

  9. Coron, Jean-Sébastien., Kizhvatov, Ilya: An efficient method for random delay generation in embedded software. In: Clavier, Christophe, Gaj, Kris (eds.) CHES 2009. LNCS, vol. 5747, pp. 156–170. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04138-9_12

    Chapter  MATH  Google Scholar 

  10. Dachman-Soled, Dana, Ducas, Léo., Gong, Huijing, Rossi, Mélissa.: LWE with side information: attacks and concrete security estimation. In: Micciancio, Daniele, Ristenpart, Thomas (eds.) CRYPTO 2020. LNCS, vol. 12171, pp. 329–358. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1_12

    Chapter  Google Scholar 

  11. D’Anvers, J., et al.: Saber algorithm specifications and supporting documentation (2020). https://www.esat.kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf

  12. D’Anvers, J.P., et al.: Revisiting higher-order masked comparison for lattice-based cryptography: algorithms and bit-sliced implementations. Cryptology ePrint Archive, 2022/110 (2022). https://eprint.iacr.org/2022/110

  13. Heinz, D., et al.: First-order masked Kyber on ARM Cortex-M4. Cryptology ePrint Archive, Report 2022/058 (2022). https://eprint.iacr.org/2022/058

  14. Hoffmann, C., et al.: Towards leakage-resistant post-quantum CCA-secure public key encryption. Cryptology ePrint Archive, Report 2022/873 (2022). https://eprint.iacr.org/2022/873

  15. Hofheinz, Dennis, Hövelmanns, Kathrin, Kiltz, Eike: A modular analysis of the Fujisaki-Okamoto transformation. In: Kalai, Yael, Reyzin, Leonid (eds.) TCC 2017. LNCS, vol. 10677, pp. 341–371. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_12

    Chapter  MATH  Google Scholar 

  16. Kocher, Paul, Jaffe, Joshua, Jun, Benjamin: Differential power analysis. In: Wiener, Michael (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_25

    Chapter  Google Scholar 

  17. Kocher, Paul C..: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In: Koblitz, Neal (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5_9

    Chapter  Google Scholar 

  18. Kundu, S., et al.: Higher-order masked Saber. Cryptology ePrint Archive, Report 2022/389 (2022). https://eprint.iacr.org/2022/389

  19. Moody, D.: Status Report on the Third Round of the NIST Post-Quantum Cryptography Standardization Process. Nistir 8309, pp. 1–27 (2022). https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8413.pdf

  20. Ngo, K., Dubrova, E., Guo, Q., Johansson, T.: A side-channel attack on a masked IND-CCA secure saber KEM implementation. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021(4), 676–707 (2021). https://doi.org/10.46586/tches.v2021.i4.676-707

  21. Ngo, K., Dubrova, E., Johansson, T.: Breaking masked and shuffled CCA secure saber KEM by power analysis. In: Proceedings of the 5th Workshop on Attacks and Solutions in Hardware Security, pp. 51–61. ACM (2021)

    Google Scholar 

  22. Ngo, K., Wang, R., Dubrova, E., Paulsrud, N.: Side-channel attacks on lattice-based KEMs are not prevented by higher-order masking. Cryptology ePrint Archive, Report 2022/919 (2022). https://eprint.iacr.org/2022/919

  23. Paulsrud, N.: A side channel attack on a higher-order masked software implementation of saber. Master’s thesis, KTH (2022)

    Google Scholar 

  24. Ravi, P., et al.: On exploiting message leakage in (few) NIST PQC candidates for practical message recovery and key recovery attacks. Crypt. ePrint Arch., 2020/1559 (2020). https://eprint.iacr.org/2020/1559

  25. Schwabe, P., et al.: CRYSTALS-Kyber algorithm specifications and supporting documentation (2020). https://csrc.nist.gov/projects/postquantum-cryptography/round-3-submissions

  26. Shen, M., et al.: Find the bad apples: an efficient method for perfect key recovery under imperfect SCA oracles - a case study of Kyber. Cryptology ePrint Archive, Report 2022/563 (2022). https://eprint.iacr.org/2022/563

  27. Sim, B.Y., et al.: Single-trace attacks on the message encoding of lattice-based kems. Cryptology ePrint Archive, Report 2020/992 (2020). https://eprint.iacr.org/2020/992

  28. Tsai, T.T., et al.: Leakage-resilient certificate-based authenticated key exchange protocol. IEEE Open J. Comput. Soc. 3, 137–148 (2022). https://doi.org/10.1109/OJCS.2022.3198073

    Article  Google Scholar 

  29. Veyrat-Charvillon, Nicolas, Medwed, Marcel, Kerckhof, Stéphanie., Standaert, François-Xavier.: Shuffling against side-channel attacks: a comprehensive study with cautionary note. In: Wang, Xiaoyun, Sako, Kazue (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 740–757. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4_44

    Chapter  Google Scholar 

  30. Wang, J., et al.: Practical side-channel attack on masked message encoding in latticed-based KEM. Cryptology ePrint Archive, Report 2022/859 (2022). https://eprint.iacr.org/2022/859

  31. Wang, R., Ngo, K., Dubrova, E.: A message recovery attack on LWE/LWR-based PKE/KEMs using amplitude-modulated EM emanations. In: International Conference on Information Security and Cryptology (2022). https://eprint.iacr.org/2022/852

  32. Wang, R., Ngo, K., Dubrova, E.: Side-channel analysis of Saber KEM using amplitude-modulated EM emanations. In: Proceedings of the 25th Euromicro Conference on Digital System Design (2022). https://eprint.iacr.org/2022/807

  33. Welch, B.L.: The generalization of ‘Student’s’ problem when several different population variances are involved. Biometrika 34(1/2), 28–35 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  34. Xu, Z., et al.: Magnifying side-channel leakage of lattice-based cryptosystems with chosen ciphertexts: the case study of Kyber. Cryptology ePrint Archive, Paper 2020/912 (2020). https://doi.org/10.1109/TC.2021.3122997

  35. Yajing, C., et al.: Template attack of LWE/LWR-based schemes with cyclic message rotation. Entropy 24(10), 15 (2022). https://doi.org/10.3390/e24101489

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Swedish Civil Contingencies Agency (Grant No. 2020-11632) and the Swedish Research Council (Grant No. 2018-04482).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Linus Backlund , Kalle Ngo , Joel Gärtner or Elena Dubrova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Backlund, L., Ngo, K., Gärtner, J., Dubrova, E. (2023). Secret Key Recovery Attack on Masked and Shuffled Implementations of CRYSTALS-Kyber and Saber. In: Zhou, J., et al. Applied Cryptography and Network Security Workshops. ACNS 2023. Lecture Notes in Computer Science, vol 13907. Springer, Cham. https://doi.org/10.1007/978-3-031-41181-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-41181-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-41180-9

  • Online ISBN: 978-3-031-41181-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics