Skip to main content

Pesticide Residue and Food Safety: Retrospection and Prospects

  • Chapter
  • First Online:
Emerging Solutions in Sustainable Food and Nutrition Security
  • 206 Accesses

Abstract

Safe food is a fundamental food right of humans, and feeding the growing population is a challenge. To increase food production, the input used like pesticides is unavoidable, as evidenced by the current rise in their use. As a result, there is a significant challenge in increasing food production while keeping residue levels below MRLs. The risks associated with improper pesticide use include pest resistance, resurgence, secondary pest outbreaks, pesticide residues, environmental contamination, and risks to human health. There are many pesticide residue mitigation options for reducing pesticide-related hazards. Pesticide management rules and regulations should be harmonized to facilitate smooth trade. All the international forums like FAO, WHO, OECD, PAN, WTO, and international conventions could play a vital role in facilitating pesticide management options, particularly for low-income and developing countries. This chapter discusses the present pesticide residue problems in the world, its analysis techniques, and potential mitigation measures to keep pesticide residue levels below MRLs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Akhtar S, Ahad K (2017) Pesticides residue in milk and milk products: mini review. Pak J Anal Environ Chem 18(1):37–45

    Article  CAS  Google Scholar 

  • Aktar MW, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip Toxicol 2:1–12

    Google Scholar 

  • Al Yahyai I, Al-Lawati HA (2021) A review of recent developments based on chemiluminescence detection systems for pesticides analysis. Luminescence 36(2):266–277

    Article  PubMed  Google Scholar 

  • Ali S, Ullah MI, Sajjad A, Shakeel Q, Hussain A (2021) Environmental and health effects of pesticide residues. In: Imnmudin, Ahamed MI, Lichtfouse E (eds) Sustainable agriculture reviews 48. Springer, Cham, pp 311–336. https://doi.org/10.1007/978-3-030-54719-6_8

  • Anastassiades M, Lehotay SJ, Stajnbaher D, Schenck FJ (2003) Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J AOAC Int 86(2):412–431

    Article  CAS  PubMed  Google Scholar 

  • Anonymous (1965) Dr. Paul Muller. Nature 208(5015):1043–1044. https://doi.org/10.1038/2081043b0

    Article  Google Scholar 

  • Aryal S, Dangi N, Simkhada R (2020) Trends in pesticide use in different agricultural commodities and residues in Nepal. In: Shyaula SL, Bajracharya GB, Gopal KC, Shakya SM, Subba D (eds) Comprehensive insights in vegetables of Nepal. Nepal Academy of Science and Technology (NAST), Khumaltar, Lalitpur, Nepal. ISBN:978-9937-0-9153-4

    Google Scholar 

  • Barrera JF (2020) The need for a holistic approach to pest management. In: Beyond IPM (ed) Introduction to the theory of holistic pest management. Springer, Cham, pp 31–46

    Google Scholar 

  • Barros EM, da Silva-Torres CS, Torres JB, Rolim GG (2018) Short-term toxicity of insecticides residues to key predators and parasitoids for pest management in cotton. Phytoparasitica 46:391–404

    Google Scholar 

  • Bartlett BR (1963) The contact toxicity of some pesticide residues to hymenopterous parasites and coccinellid predators. J Econ Entomol 56(5):694–698. https://doi.org/10.1093/jee/56.5.694

    Article  CAS  Google Scholar 

  • Bhandari G, Zomer P, Atreya K, Mol HGJ, Yang X, Geissen V (2019) Pesticide residues in Nepalese vegetables and potential health risks. Environ Res 172:511–521

    Article  CAS  PubMed  Google Scholar 

  • Bonansea RI, Marino DJG, Bertrand L, Wunderlin DA, Amé MV (2016) Tissue-specific bioconcentration and biotransformation of cypermethrin and chlorpyrifos in a native fish (Jenynsia multidentata) exposed to these insecticides singly and in mixtures. Environ Toxicol Chem 36(7):1764–1774. https://doi.org/10.1002/etc.3613

    Article  CAS  PubMed  Google Scholar 

  • Bovay J (2016) FDA refusals of imported food products by country and category, 2005–2013 (No. 1476-2017-3912)

    Google Scholar 

  • Bro-Rasmussen F (1996) Contamination by persistent chemicals in the food chain and human health. Sci Total Environ 188:845–860

    Article  Google Scholar 

  • Buzby JC, Unnevehr LJ, Roberts D (2008) Food Safety and Imports: An Analysis of FDA Food-Related Import Refusal Reports, EIB-39, U.S. Department of Agriculture, Economic Research Service, September 2008. Unites States Department of Agriculture.

    Google Scholar 

  • Carvalho FP (2017) Pesticides, environment, and food safety. Food Energy Secur 6:48–60

    Article  Google Scholar 

  • CFR (2021) Code of Federal Regulations. Title 40. Protections of environment. Office of the Federal Register National Archives and Records Administration. Parts 1 to 49

    Google Scholar 

  • Chang SC, Kao CH, Shen-Tu H, Chou TM, Lo SC (2018) Potential application of immunoassay for the detection of pesticide residues in agriculture. In: Proceedings of the 2018 international symposium on proactive technologies for enhancement of integrated pest management of key crops (E-book)

    Google Scholar 

  • Chen M, Tao L, McLean J, Lu C (2014) Quantitative analysis of neonicotinoid insecticide residues in foods: implication for dietary exposures. J Agric Food Chem 62:6082–6090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chormare R, Kumar MA (2022) Environmental health and risk assessment metrics with special mention to biotransfer, bioaccumulation and bio-magnification of environmental pollutants. Chemosphere 302:134836

    Article  CAS  PubMed  Google Scholar 

  • Choudhary S, Yamini NR, Yadav SK, Kamboj M, Sharma A (2018) A review: pesticide residue: cause of many animal health problems. J Entomol Zool Stud 6:330–333

    Google Scholar 

  • Claeys WL, De Voghel S, Schmit JF, Vromman V, Pussemier L (2008) Exposure assessment of the Belgian population to pesticide residues through fruit and vegetable consumption. Food Addit Contam Part A 25:851–863

    Article  CAS  Google Scholar 

  • Clasen B, Loro VL, Murussi CR, Tiecher TL, Moraes B, Zanella R (2018) Bioaccumulation and oxidative stress caused by pesticides in Cyprinus carpio reared in a rice-fish system. Sci Total Environ 626:737–743

    Article  CAS  PubMed  Google Scholar 

  • Connell DW (2018) Bio-magnification of lipophilic compounds in terrestrial and aquatic systems. In: Bioaccumulation of xenobiotic compounds. CRC Press, pp 145–186

    Chapter  Google Scholar 

  • Czub G, McLachlan MS (2004) Bioaccumulation potential of persistent organic chemicals in humans. Environ Sci Technol 38:2406–2412

    Article  CAS  PubMed  Google Scholar 

  • Dahal P, Dhimal M, Belbase K, Tiwari S, Groopman J, West K, Pollock B, Pyakurel S, Acharya G, Aryal S, Ghimire YN (2020) Improving nutrition and immunity with dry chain and integrated pest management food technologies in LMICs. Lancet Planet Health 4(7):e259

    Article  PubMed  PubMed Central  Google Scholar 

  • Damalas CA (2009) Understanding benefits and risks of pesticide use. Sci Res Essays 10:945–949

    Google Scholar 

  • Day R, Haggblade S, Moephuli S, Mwangombe A, Nouala S (2022) Institutional and policy bottlenecks to IPM. Curr Opin Insect Sci 52:100946

    Article  PubMed  Google Scholar 

  • Debnath M, Khan MS (2017) Health concerns of pesticides. In: Khan MS, Rahman MS (eds) Pesticide residue in foods. Springer Nature, Cham, pp 103–118

    Chapter  Google Scholar 

  • Decker GC (1946) Agricultural applications of DDT, with special reference to the importance of residues. J Econ Entomol 39(5):557–562. https://doi.org/10.1093/jee/39.5.557

    Article  CAS  PubMed  Google Scholar 

  • Dessouki AM, Aly HF, Sokke HH (1999) The use of Gamma Radiation for removal of pesticides from waste water. Czechoslov J Phys 49:521–533

    Article  CAS  Google Scholar 

  • De Solla SR (2016) Exposure, bioaccumulation, metabolism and monitoring of persistent organic pollutants in terrestrial wildlife. In: Alaee M. (ed) Dioxin and Related Compounds: The Handbook of Environmental Chemistry. pp 203–252

    Google Scholar 

  • DFTQC (2022) Mycotoxin, pesticide residue MRL of fruits and vegetable mandatory standard, Nepal Gazette notice published on 2021/02/19. http://www.dftqc.gov.np/noticedetail/80/2021/45518958. Retrieved on 7/19/2022

  • Drouillet-Pinard P, Boisset M, Periquet A, Lecerf JM, Casse F, Catteau M, Barnat S (2011) Realistic approach of pesticide residues and French consumer exposure within fruit and vegetable intake. J Environ Sci Health B 46:84–91. https://doi.org/10.1080/03601234.2011.534413

    Article  CAS  PubMed  Google Scholar 

  • Durham WF (1963) Pesticide residues in foods in relation to human health. Residue Rev/Rückstands-Berichte 4:33–81. https://doi.org/10.1007/978-1-4615-8380-6_4

    Article  CAS  PubMed  Google Scholar 

  • EFSA (2015) Residues trials and MRL calculations. Proposals for a harmonized approach for the selection of the trials and data used for the estimation of MRL, STMR and HR. European Food Safety Authority. Via Carlo Magno

    Google Scholar 

  • EFSA (European Food Safety Authority), Carrasco Cabrera L, Medina Pastor P (2022) The 2020 European Union report on pesticide residues in food. EFSA J 20:7215. https://doi.org/10.2903/j.efsa.2022.7215

    Article  Google Scholar 

  • Eilenberg J, Hajec A, Lomer C (2001) Suggestions for unifying the terminology in biological control. BioControl 46:387–400

    Article  Google Scholar 

  • EU (2005) Regulation (EC) No 396/2005 of the European Parliament and of the Council of 23 February 2005 on maximum residue levels of pesticides in or on food and feed of plant and animal origin and amending Council Directive 91/414/EEC. Official Journal of the European Union, L70/1

    Google Scholar 

  • European Commission (2021) MRL setting procedure in accordance with articles 6 to 11 of regulation (EC) no 396/2005 and article 8 of regulation (EC) No 1107/2009. European Commission, Directorate-General for Health and Food Safety. https://food.ec.europa.eu/system/files/2021-03/pesticides_mrl_guidelines_mrl-setting-proc_v5-5.pdf. Retrieved on 7/19/2022

  • FAO (1988) Guidelines on retail distribution of pesticides with particular reference to storage and handling at the point of supply to users in developing countries. Food and Agriculture Organization of The United Nations. Rome

    Google Scholar 

  • FAO (2016) Submission and evaluation of pesticide residues data for the estimation of maximum residue levels in food and feed. FAO plant production and protection paper 225. Food and Agriculture Organization of United Nations, Rome

    Google Scholar 

  • FAO (2017) The future of food and agriculture – trends and challenges, Rome

    Google Scholar 

  • FAO (2018) Pesticide use. Global, regional and country trends 1990–2018. FAOSTAT analytical brief 16. Food and Agriculture Organization of the United States

    Google Scholar 

  • FAO (2020) Pesticide use, pesticide trade, and pesticide indicators. Global, regional and country trends, 1990–2020. FAOSTAT analytical brief 16. Food and Agriculture Organization of the United States

    Google Scholar 

  • FAO (2022) NSP – integrated pest management. https://www.fao.org/agriculture/crops/thematic-sitemap/theme/pests/ipm/en/

  • FAOSTAT (2022) FAOSTAT Pesticide use. Food and Agriculture of the United Nations. https://www.fao.org/faostat/en/#data/RP. Retrieved on 7/19/2022

  • FAO/WHO (2014) The international code of conduct on pesticide management. Food and Agriculture Organization of the United Nations (FAO), World Health Organization, Rome, p 49

    Google Scholar 

  • FAO/WHO (2022) Report 2021 – pesticide residues in food – Joint FAO/WHO meeting on pesticide residues, Rome. https://doi.org/10.4060/cb8313en

  • Ferro E, Otsuki T, Wilson JS (2015) The effect of product standards on agricultural exports. Food Policy 50:68–79

    Article  Google Scholar 

  • Fremlin KM, Elliott JE, Green DJ, Drouillard KG, Harner T, Eng A, Gobas FA (2020) Trophic magnification of legacy persistent organic pollutants in an urban terrestrial food web. Sci Total Environ 20(714):136746

    Article  Google Scholar 

  • FSSAI (2020) Food safety and standards (Contaminants, toxins and residues) regulations, 2011. Version –V (19.08.2020). https://www.fssai.gov.in/upload/uploadfiles/files/Compendium_Contaminants_Regulations_20_08_2020.pdf

  • Gale F (2021) China’s refusals of food imports, ERR-286. U.S. Department of Agriculture, Economic Research Service

    Google Scholar 

  • GC Y, Palikhe B (2021) From the field to dining table: pesticides residues. J Agric Environ 22:1–16. https://doi.org/10.3126/aej.v22i0.46781

    Article  Google Scholar 

  • Gerage JM, Meira AP, da Silva MV (2017) Food and nutrition security: pesticide residues in food. Nutrire 42:1–9

    Google Scholar 

  • Gerber R, Smit NJ, Van Vuren JHJ, Nakayama SMM, Yohannes YB, Ikenaka Y, Wepener V (2016) Bioaccumulation and human health risk assessment of DDT and other organochlorine pesticides in an apex aquatic predator from a premier conservation area. Sci Total Environ 550:522–533. https://doi.org/10.1016/j.scitotenv.2016.01.1

    Article  CAS  PubMed  Google Scholar 

  • Giri S, Giri A, Sharma GD, Prasad SB (2002) Mutagenic effects of carbosulfan, a carbamate pesticide. Mutat Res Genet Toxicol Environ Mutagen 519:75–82. https://doi.org/10.1016/s1383-5718(02)00114-6

    Article  CAS  Google Scholar 

  • Giri YP, Mainali BP, Aryal S, Paneru RB, Bista S, Maharjan R (2004) Use of insecticides on vegetable crops in Dhading district. In: Proceedings of the 4th national workshop on horticulture. Nepal Agricultural Research Council, Khumaltar, Lalitpur, pp 431–438

    Google Scholar 

  • Giri YP, Thapa RB, Shrestha SM, Pradhan SB, Maharjan R, Sporleder M, Kroschel J (2014) Pesticide use pattern and awareness of pesticides users with special reference to potato growers in Nepal. Int J Dev Res 4:2297–2302

    Google Scholar 

  • Giri YP, Aryal S, Paneru RB (2016) Review and future strategies on the pesticide residue works of agricultural commodities in Nepal. In: Proceedings of workshop on review and strategy development of entomological research works in Nepal. Nepal Agricultural Research Council, Entomology Division, Khumaltar, Lalitpur, pp 64–73

    Google Scholar 

  • Gobas FA, Kelly BC, Arnot JA (2013) Quantitative structure-activity relationships for predicting the bioaccumulation of POPs in terrestrial food-webs. QSAR Comb Sci 22:329–336

    Article  Google Scholar 

  • GoI (2020) Gazette of India. Department of Agriculture, Co-operation and Farmers Welfare, Ministry of Agriculture and Farmers Welfare

    Google Scholar 

  • GoP (1973) Consolidated agricultural pesticides rules 1973 amended & updated. https://plantprotection.gov.pk/wp-content/uploads/2021/05/Agricultural-Pesticide-Rules-APR.pdf

  • Goyal TM, Mukherjee A, Kapoor A (2017) India’s exports of food products: Food safety related issues and way forward, Working Paper, No. 345, Indian Council for Research on International Economic Relations (ICRIER), New Delhi

    Google Scholar 

  • Gupta S, Gupta K (2020) Bioaccumulation of pesticides and its impact on biological systems. In: Srivastava PK, Singh VP, Singh A, Tripathi DK, Singh S, Prasad SM, Chauhan DK (eds) Pesticides in crop production. Wiley. https://doi.org/10.1002/9781119432241

    Chapter  Google Scholar 

  • Hawkins BA, Cornell HV, Hochberg ME (1997) Predators, parasitoids, and pathogens as mortality agents in phytophagous insect populations. Ecology 78(7):2145–2152

    Article  Google Scholar 

  • Hedlund J, Longo SB, York R (2020) Agriculture, pesticide use, and economic development: a global examination (1990–2014). Rural Sociol 85:519–544

    Article  Google Scholar 

  • Hejazi M, Grant JH, Peterson E (2022) Trade impact of maximum residue limits in fresh fruits and vegetables. Food Policy 106:102203

    Article  Google Scholar 

  • Islam R, Kumar S, Karmoker J, Kamruzzaman M, Rahman MA, Biswas N, Tran TKA, Rahman MM (2018) Bioaccumulation and adverse effects of persistent organic pollutants (POPs) on ecosystems and human exposure: a review study on Bangladesh perspectives. Environ Technol Innov 12:115–131

    Article  Google Scholar 

  • ITESDES (2018) International technological sciences and design symposium, 27–29 June 2018. Proceeding Book

    Google Scholar 

  • Jepson PC, Murray K, Bach O, Bonilla MA, Neumeister L (2020) Selection of pesticides to reduce human and environmental health risks: a global guideline and minimum pesticides list. Lancet Planet Health 4:e56–e63

    Article  PubMed  Google Scholar 

  • Ji H, Xia C, Xu J, Wu X, Qiao L, Zhang C (2020) A highly sensitive immunoassay of pesticide and veterinary drug residues in food using by tandem conjugation of bi-functional mesoporous silica nanospheres. Analyst 145:2226–2232. https://doi.org/10.1039/c9an02430a

    Article  CAS  PubMed  Google Scholar 

  • Kale SP, Murthy NBK, Raghu K, Sherkhane PD, Carvalho FP (1999) Studies on degradation of 14C-DDT in the marine environment. Chemosphere 39:959–968

    Article  CAS  PubMed  Google Scholar 

  • Kao CH, Hsieh YS, Chiang MY, Huang YB (2010) Residues control by using rapid bioassay of pesticide residues (RBPR) for market inspection and farm education. In: Technology on reducing post-harvest losses and maintaining quality of fruits and vegetables. Proceedings of AARDO Workshop. Taiwan Agricultural Research Institute, Council of Agriculture, Taiwan, ROC

    Google Scholar 

  • Karaye AK, Sabo BB, Chamo AM, Rabiu AM (2017) Influence of agronomic practices on crop production. IJSBAR 31:61–66

    Google Scholar 

  • Kori RK, Singh MK, Jain AK, Yadav RS (2018) Neurochemical and behavioral dysfunctions in pesticide exposed farm workers: a clinical outcome. Indian J Clin Biochem 33:372–381. https://doi.org/10.1007/s12291-018-0791-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar AD, Reddy DN (2021) The pesticide management bill 2020. Curr Sci 121:348–349

    Google Scholar 

  • Lacalle-Bergeron L, Portolés T, López FJ, Sancho JV, Ortega-Azorín C, Asensio EM, Coltell O, Corella D (2020) Ultra-performance liquid chromatography-ion mobility separation-quadruple time-of-flight MS (UHPLC-IMS-QTOF MS) metabolomics for short-term biomarker discovery of orange intake: a randomized, controlled crossover study. Nutrients 12:1916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leong WH, Teh SY, Hossain MM, Nadarajaw T, Zabidi-Hussin Z, Chin SY, Lai KS, Lim SHE (2020) Application, monitoring and adverse effects in pesticide use: the importance of reinforcement of Good Agricultural Practices (GAPs). J Environ Manag 260:109987

    Article  CAS  Google Scholar 

  • Li X, Yang T, Song Y, Zhu J, Wang D, Li W (2019) Surface-enhanced Raman spectroscopy (SERS)-based immune chromatographic assay (ICA) for the simultaneous detection of two pyrethroid pesticides. Sensors Actuators B Chem 283:230–238. https://doi.org/10.1016/j.snb.2018.11.112

    Article  CAS  Google Scholar 

  • Maharjan R, Aryal S, Mainali BP, Bista S, Manandhar DN, Giri YP, Paneru R (2004) Survey on magnitude of insecticides use in vegetable crops. In: Proceedings of the 4th national workshop on horticulture. Nepal Agricultural Research Council, National Agriculture Research Institute and Horticulture Research Division, Khumaltar, Kathmandu, pp 291–298

    Google Scholar 

  • Martins ML, Kemmerich M, Prestes OD, Maldaner L, Jardim IC, Zanella R (2017) Evaluation of an alternative fluorinated sorbent for dispersive solid-phase extraction clean-up of the quick, easy, cheap, effective, rugged, and safe method for pesticide residues analysis. J Chromatogr A 1514:36–43

    Google Scholar 

  • Maulidiyah M, Azis T, Lindayani L, Wibowo D, Salim LOA, Aladin A, Nurdin M (2019) Sol-gel TiO2/carbon paste electrode nanocomposites for electrochemical-assisted sensing of fipronil pesticide. J Electrochem Sci 10(4):394–401

    Article  CAS  Google Scholar 

  • Mert A, Qi A, Bygrave A, Stotz HU (2022) Trends of pesticide residues in foods imported to the United Kingdom from 2000 to 2020. Food Control 133:108616

    Article  Google Scholar 

  • Mir SA, Dar BN, Mir MM, Sofi SA, Shah MA, Sidiq T, Sunooj KV, Hamdani AM, Khaneghah AM (2022) Current strategies for the reduction of pesticide residues in food products. J Food Compos Anal 10:104274

    Google Scholar 

  • Misra NN (2015) The contribution of non-thermal and advanced oxidation technologies towards dissipation of pesticide residues. Trends Food Sci Technol 45:229–244

    Article  CAS  Google Scholar 

  • Mosqueda-Melgar J, Raybaudi-Massilia RM, Martín-Belloso O (2008) Non-thermal pasteurization of fruit juices by combining high-intensity pulsed electric fields with natural antimicrobials. Innovative Food Sci Emerg Technol 9:328–340

    Article  CAS  Google Scholar 

  • Muñoz-Quezada MT, Lucero BA, Barr DB, Steenl K, Levy K, Ryan PB, Iglesias V, Alvarado S, Concha C, Rojas E, Vega C (2013) Neurodevelopmental effects in children associated with exposure to organophosphate pesticides: a systematic review. Neurotoxicology 39:158

    Article  PubMed  PubMed Central  Google Scholar 

  • Narenderan ST, Meyyanathan SN, Babu BJ (2020) Review of pesticide residue analysis in fruits and vegetables. Pre-treatment, extraction and detection techniques. Food Res Int 133:109141

    Article  CAS  PubMed  Google Scholar 

  • Negatu B, Dugassa S, Mekonnen Y (2021) Environmental and health risks of pesticide use in Ethiopia. J Health Pollut 11:210601

    Article  PubMed  PubMed Central  Google Scholar 

  • Ning Y, Li K, Zhao Z, Chen D, Li Y, Liu Y, Jiang B (2021) Simultaneous electrochemical degradation of organophosphorus pesticides and recovery of phosphorus: synergistic effect of anodic oxidation and cathodic precipitation. J Taiwan Inst Chem Eng 125:267–275

    Article  CAS  Google Scholar 

  • Nurdin M, Maulidiyah M, Salim LOA, Muzakkar MZ, Umar AA (2019) High performance cypermethrin pesticide detection using anatase TiO2-carbon paste nanocomposites electrode. Microchem J 145:756–761. https://doi.org/10.1016/j.microc.2018.11.050

    Article  CAS  Google Scholar 

  • OECD (2011) OECD MRL calculator: user guide. OECD Environment, Health and Safety Publication. Series on Pesticides, No. 56

    Google Scholar 

  • OECD (2016) Draft guidance document on crop field trials. OECD Environment, Health and Safety Publications. Series on Pesticides, No. 66 and Series on Testing and Assessment, No. 164. https://www.oecd.org/env/ehs/testing/GD%20CFT_31%20March%202016.pdf

  • Oseto CY (2000) Physical control of insects. In: Rechcigl JE, Rechcigl NA (eds) Insect pest management, techniques for environmental protection. CRC Press, pp 25–100

    Google Scholar 

  • Paidi MK, Satapute P, Haider MS, Udikeri SS, Ramchandra YL, Vo DVN, Goverthanan M, Jagaih S (2021) Mitigation of organophosphorus insecticides from environment: residual detoxification by bioweapon catalytic scavengers. Environ Res. Elsevier 200:111368

    Article  CAS  Google Scholar 

  • Panseri S, Chiesa L, Ghisleni G, Marano G, Boracchi P, Ranghieri V, Malandra RM, Roccabianca P, Tecilla M (2019) Persistent organic pollutants in fish: biomonitoring and cocktail effect with implications for food safety. Food Addit Contam Part A 36(601–611):11. https://doi.org/10.1080/19440049.2019.1579926

    Article  CAS  Google Scholar 

  • Parven A, Khan MS, Prodhan MD, Venkateswarlu K, Megharaj M, Meftaul IM (2021) Human health risk assessment through quantitative screening of insecticide residues in two green beans to ensure food safety. J Food Compos Anal 103:104121.

    Google Scholar 

  • Pérez-Parada A, Goyenola G, de Mello FT, Heinzen H (2018) Recent advances and open questions around pesticide dynamics and effects on freshwater fishes. Curr Opin Environ 4:38–44. https://doi.org/10.1016/j.coesh.2018.08.004

    Article  Google Scholar 

  • Pisa L, Goulson D, Yang EC, Gibbons D, Sánchez-Bayo F, Mitchell E, Aebi A, van der Sluijs J, MacQuarrie CJ, Giorio C, Long EY (2021) An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 2: impacts on organisms and ecosystems. Environ Sci Pollut Res 28:11749–11797

    Article  CAS  Google Scholar 

  • PRMS (2015) Final report on study on national pesticide consumption statistics in Nepal. Report submitted to Pesticide Registration and Management Centre, Ministry of Agriculture and Livestock Development, Government of Nepal, Hariharbhawan, Lalitpur

    Google Scholar 

  • Racke KD (2007) Pesticide residues in food and international trade: regulation and safety considerations. In: Hideo O, Hisashi M, Philip L (eds) Pesticide chemistry: crop protection, public health, environmental safety, vol 6, pp 29–41

    Chapter  Google Scholar 

  • Ragnarsdottir KV (2000) Environmental fate and toxicology of organophosphate pesticides. J Geol Soc 157(4):859–876

    Article  CAS  Google Scholar 

  • Rahman MM (2012) Problems and suggestions for farmers’ adoption of IPM practices in rice (Oryza sativa L) cultivation. Bangladesh J Agric Res 37(1):121–128. https://doi.org/10.3329/bjar.v37i1.11183

    Article  Google Scholar 

  • RGB (2000) The pesticide act of Bhutan (2000) Royal Government of Bhutan. Ministry of Agriculture

    Google Scholar 

  • Rossi AS, Fanton N, Michlig MP, Repetti MR, Cazenave J (2020) Fish inhabiting rice fields: Bioaccumulation, oxidative stress and neurotoxic effects after pesticides application. Ecol Indic 113:106186

    Google Scholar 

  • Sarangapani C, O’Toole G, Cullen PJ, Bourke P (2017) Atmospheric cold plasma dissipation efficiency of agrochemicals on blueberries. Innovative Food Sci Emerg Technol 44:235–241

    Article  CAS  Google Scholar 

  • Sarath Chandran C, Thomas S, Unni MR (2019) Pesticides: classification, detection, and degradation. In: Sarath Chandran C, Thomas S, Unni MR (eds) Organic farming. Springer Nature Switzerland, pp 71–87. https://doi.org/10.1007/978-3-030-04657-6_5

  • Schulz R, Bundschuh M (2020) Pathways of contaminant transport across the aquatic-terrestrial interface: implications for terrestrial consumers, ecosystems, and management. In: Contaminants and ecological subsidies. Springer, Cham, pp 35–57

    Chapter  Google Scholar 

  • Serrano-Medina A, Ugalde-Lizárraga A, Bojorquez-Cuevas MS, Garnica-Ruiz J, González-Corral MA, García-Ledezma A, Pineda-García G, Cornejo-Bravo JM (2019) Neuropsychiatric disorders in farmers associated with organophosphorus pesticide exposure in a rural village of Northwest México. Int J Environ Res Public Health 16:689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shahraki GH, Hafidzi MN, Khadri MS, Rafinejad J, Ibrahim YB (2011) Cost-effectiveness of integrated pest management compared with insecticidal spraying against the German cockroach in apartment buildings. Neotrop Entomol 40:607–612

    PubMed  Google Scholar 

  • Sharma KC (1994) Current experience and Practice in pesticide use in the Bagmati Zone. ADPI Series No. 9. International Center for Integrated Mountain Development (ICIMOD), Kathmandu, Nepal. https://doi.org/10.53055/ICIMOD.159

  • Sharma A, Kumar V, Shahzad B, Tanveer M, Sidhu GPS, Handa N, Kohli SK, Yadav P, Bali AS, Parihar RD, Dar OI (2019) Worldwide pesticide usage and its impacts on ecosystem. SN Appl Sci 1:1–16

    Article  Google Scholar 

  • Silver MK, Meeker JD (2020) Prenatal pesticide exposure and child health. In: Xia Y (ed) Early-life environmental exposure and disease. Springer, Singapore, pp 51–66. https://doi.org/10.1007/978-981-15-3797-4_3

    Chapter  Google Scholar 

  • Skretteberg LG, Lyrån B, Holen B, Jansson A, Fohgelberg P, Siivinen K, Andersen JH, Jensen BH (2015) Pesticide residues in food of plant origin from Southeast Asia–A Nordic project. Food Control 51:225–235

    Article  CAS  Google Scholar 

  • SLSI (2021) Sri Lanka Standard Catalogue. Sri Lanka Standards Institution. ISSN 2012-9254

    Google Scholar 

  • Soltani Nazarloo A, Rasooli Sharabiani V, Abbaspour Gilandeh Y, Taghinezhad E, Szymanek M, Sprawka M (2021) Feasibility of using VIS/NIR spectroscopy and multivariate analysis for pesticide residue detection in tomatoes. Processes 9:196. https://doi.org/10.3390/pr9020196

    Article  Google Scholar 

  • Staudacher P, Fuhrimann S, Farnham A, Mora AM, Atuhaire A, Niwagaba C, Stamm C, Eggen RI, Winkler MS (2020) Comparative analysis of pesticide use determinants among smallholder farmers from Costa Rica and Uganda. Environ Health Insights 14:1–15

    Article  Google Scholar 

  • Syed JH, Alamdar A, Mohammad A, Ahad K, Shabir Z, Ahmed H, Ali SM, Sani SG, Bokhari H, Gallagher KD, Ahmad I (2014) Pesticide residues in fruits and vegetables from Pakistan: a review of the occurrence and associated human health risks. Environ Sci Pollut Res 21:13367–13393. https://doi.org/10.1007/s11356-014-3117-z

    Article  CAS  Google Scholar 

  • Tang Z, Huang Q, Nie Z, Yang Y, Yang J, Qu D, Cheng J (2016) Levels and distribution of organochlorine pesticides and hexachlorobutadiene in soils and terrestrial organisms from a former pesticide-producing area in Southwest China. Stoch Env Res Risk A 30(4):1249–62. https://doi.org/10.1007/s00477-015-1144-z

  • Thapa RB (1997) An overview of pesticide pollution in Nepal. Nepalese Hort 1:31–39

    Google Scholar 

  • The Bangladesh Gazette (1985) The pesticide rules, 1985. Government of the Peoples Republic of Bangladesh, Ministry of Agriculture, Dhaka

    Google Scholar 

  • Tiwari AK, Singh KK, Singh ADR (2020) Adoption level and constraints of IPM technology in chickpea growers of Raebareli district of Uttar Pradesh. J Entomol Zool Stud 8:750–755

    Google Scholar 

  • Tongo I, Onokpasa A, Emerure F, Balogun PT, Enuneku AA, Erhunmwunse N, Asemota O, Ogbomida E, Ogbeide O, Ezemonye L (2022) Levels, bioaccumulation and biomagnification of pesticide residues in a tropical freshwater food web. Inter J Environ Sci Technol 1–6

    Google Scholar 

  • Tudi M, Daniel Ruan H, Wang L, Lyu J, Sadler R, Connell D, Chu C, Phung DT (2021) Agriculture development, pesticide application and its impact on the environment. Int J Environ Res Public Health 18:1112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van den Berg H, Gu B, Grenier B, Kohlschmid E, Al-Eryani S, da Silva Bezerra HS, Nagpal BN, Chanda E, Gasimov E, Velayudhan R, Yadav RS (2020) Pesticide lifecycle management in agriculture and public health: where are the gaps? Sci Total Environ 742:140598

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Eeden M, Korsten L (2013) Factors determining use of biological disease control measures by the avocado industry in South Africa. Crop Prot 51:7–13. https://doi.org/10.1016/j.cropro.2013.03.011

    Article  Google Scholar 

  • Van Lenteren JE, Woets JV (1988) Biological and integrated pest control in greenhouses. Annu Rev Entomol 33(1):239–269

    Article  Google Scholar 

  • Wahab S, Muzammil K, Nasir N, Khan MS, Ahmad MF, Khalid M, Ahmad W, Dawria A, Reddy LK, Busayli AM (2022) Advancement and new trends in analysis of pesticide residues in food: a comprehensive review. Plan Theory 11:1106

    CAS  Google Scholar 

  • Weichenthal S, Moase C, Chan P (2010) A review of pesticide exposure and cancer incidence in the agricultural health study cohort. Environ Health Perspect 118:1117–1125. https://doi.org/10.1289/ehp.0901731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitehead AJ (2019) International food trade, harmonization, and mutual acceptance. In: International food safety handbook. Routledge, pp 747–766

    Chapter  Google Scholar 

  • WHO (2014) Capacity-building of national Codex Committees in the Member States of South-East Asia, Report of a regional workshop, New Delhi, India, 23–25 October 2013. WHO Regional Office for South-East Asia

    Google Scholar 

  • WHO (2017) Global vector control response 2017–2030. World Health Organization, Geneva

    Google Scholar 

  • WHO (2019) Global insecticide use for vector-borne disease control. A 10-year assessment (2010–2019), 6th edn. WHO

    Google Scholar 

  • Wieck C, Grant JH (2021) Codex in motion: food safety standard setting and impacts on developing countries’ agricultural exports. EuroChoices 20:37–47. https://doi.org/10.1111/1746-692x.12293

    Article  Google Scholar 

  • Wilson JS, Otsuki T (2004) To spray or not to spray: pesticides, banana exports, and food safety. Food Policy 29:131–146

    Article  Google Scholar 

  • Wolfe NL, Zepp RG, Paris DF (1978) Use of structure-reactivity relationships to estimate hydrolytic persistence of carbamate pesticides. Water Res 12(8):561–563. ISSN 0043-1354

    Article  CAS  Google Scholar 

  • Yadav IC, Devi NL, Syed JH, Cheng Z, Li J, Zhang G, Jones KC (2015) Current status of persistent organic pesticides residues in air, water, and soil, and their possible effect on neighboring countries: A comprehensive review of India. Sci Total Environ 511:123–137. https://doi.org/10.1016/j.scitotenv.2014.12.0

    Article  CAS  PubMed  Google Scholar 

  • Yarpuz-Bozdogan N (2018) The importance of personal protective equipment in pesticide applications in agriculture. Curr Opin Environ Sci Health 4:1–4

    Article  Google Scholar 

  • Yeung MT, Kerr WA, Coomber B, Lantz M, McConnell A (2017) Why maximum residue limits for pesticides are an important international issue. In: Declining international cooperation on pesticide regulation. Palgrave Macmillan, Cham, pp 1–9. https://doi.org/10.1007/978-3-319-60552-4_1

    Chapter  Google Scholar 

  • Yu G, Ma B, Chen J, Li X, Li Y, Li C (2020) Nondestructive identification of pesticide residues on the Hami melon surface using deep feature fusion by Vis/NIR spectroscopy and 1D-CNN. J Food Process Eng 2021(44):e13602. https://doi.org/10.1111/jfpe.13602

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Aryal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aryal, S., Aryal, L.N. (2023). Pesticide Residue and Food Safety: Retrospection and Prospects. In: Ghosh, S., Kumari Panda, A., Jung, C., Singh Bisht, S. (eds) Emerging Solutions in Sustainable Food and Nutrition Security. Springer, Cham. https://doi.org/10.1007/978-3-031-40908-0_8

Download citation

Publish with us

Policies and ethics