Skip to main content

Aquaculture: Contributions to Global Food Security

  • Chapter
  • First Online:
Emerging Solutions in Sustainable Food and Nutrition Security

Abstract

Aquaculture has emerged as the world’s most rapidly expanding food-production sector. This chapter summarizes the key drivers of this increase and demonstrates how aquaculture may, directly and indirectly, help sustainable food security. A range of technologies have been discussed which may drive changes in aquaculture to enhance its contribution to food security. Nanotechnology exhibits tremendous potential in agriculture and allied fields like aquaculture and fisheries. It is critical to underline the diversity of issues for a systems approach that might define the path of aquaculture growth to fulfill future fish demand. Aquatic products are considered critical components of a nutritious and sustainable food system. In this chapter, we suggest that the discussion about aquatic foods should focus more on finding and implementing interventions to increase productivity, describe various possible technological and institutional intervention approaches, and assess their potential for enhancing global aquaculture output and environmental performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akbari M, Foroudi P, Shahmoradi M et al (2022) The evolution of food security: where are we now, where should we go next? Sustainability. https://doi.org/10.3390/su14063634

  • Angelisa TY, Osmond SM (2019) The future of genetic engineering to provide essential dietary nutrients and improve growth performance in aquaculture: advantages and challenges. J World Aquacult Soc 50(3):490–509. https://doi.org/10.1111/jwas.12595

    Article  Google Scholar 

  • Anghinoni G, Anghinoni FBG, Tormena C. A et al (2021) Conservation agriculture strengthen sustainability of Brazilian grain production and food security. Land Use Policy https://doi.org/10.1016/j.landusepol.2021.105591

  • Auchterlonie N (2018) The continuing importance of fishmeal and fish oil in aquafeeds. Presented at the Aquafarm Conference, Pordenone, Italy, 15–16 February. www.iffo.net/iffo-presentations

  • Azra MN, Chen JC, Hsu TH (2019) Growth, molting duration and carapace hardness of blue swimming crab, Portunus pelagicus, instars at different water temperatures. Aquac Rep 15:100226. https://doi.org/10.1016/j.aqrep.2019.100226

    Article  Google Scholar 

  • Azra MN, Okomoda VT, Tabatabaei M et al (2021) The contributions of shellfish aquaculture to global food security: assessing its characteristics from a future food perspective. Front Mar Sci 8:654897. https://doi.org/10.3389/fmars.2021.654897

    Article  Google Scholar 

  • Baghele M, Mishra S, Meyer-Rochow VB, Jung C, Ghosh S (2022) A review of the nutritional potential of edible snails: a sustainable underutilized food resource. Indian J Nat Prod Resour 13:419–433

    CAS  Google Scholar 

  • Bailey JL, Eggereide SS (2020) Indicating sustainable salmon farming: the case of the new Norwegian aquaculture management scheme. Mar Policy 117:103925

    Article  Google Scholar 

  • Belton B, Bush SR, Little DC (2018) Not just for the wealthy: rethinking farmed fish consumption in the Global South. Glob Food Sec 16:85–92

    Article  Google Scholar 

  • BĂ©nĂ© C, Barange M, Subasinghe R, Pinstrup-Andersen P, Merino G, Hemre G-I, Williams M (2015) Feeding 9 billion by 2050 – putting fish back on the menu. Food Secur 7:261–274

    Article  Google Scholar 

  • Benton TG, Bailey R, Froggatt A et al (2018) Designing sustainable land use in a 1.5_C world: the complexities of projecting multiple ecosystem services from land. Curr Opin Environ Sustain 31:88–95

    Article  Google Scholar 

  • Brouwer ID, Van Liere MJ, De Brauw A et al (2021) Reverse thinking: taking a healthy diet perspective towards food systems transformations. Food Secur 13(6):1497–1523

    Article  Google Scholar 

  • Chakrapani V, Patra SK, Panda RP et al (2016) Establishing targeted carp TLR22 gene disruption via homologous recombination using CRISPR/ Cas9. Dev Comp Immunol 61:242–247. https://doi.org/10.1016/j.dci.2016.04.009

    Article  CAS  PubMed  Google Scholar 

  • Chan CY, Tran N, Cheong KC et al (2021) The future of fish in Africa: employment and investment opportunities. PLoS One 16(12):e0261615. https://doi.org/10.1371/journal.pone.0261615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Datsomor AK, Zic N, Li K et al (2019) CRISPR/Cas9-mediated ablation of elovl2 in Atlantic salmon (Salmo salar L.) inhibits elongation of polyunsaturated fatty acids and induces Srebp-1 and target genes. Sci Rep 9(1):1–13

    Article  Google Scholar 

  • Elaswad A, Khalil K, Ye Z et al (2018) Effects of CRISPR/Cas9 dosage on TICAM1 and RBL gene mutation rate, embryonic development, hatchability and fry survival in channel catfish. Sci Rep 8(1):1–17

    Article  CAS  Google Scholar 

  • FAO (2018) The state of world fisheries and aquaculture 2018 meeting the sustainable. Development Goals (FAO)

    Google Scholar 

  • FAO (2019) The State of the World’s Aquatic Genetic Resources for Food and Agriculture (United Nations Food and Agricultural Organization)

    Google Scholar 

  • FAO (2020) The state of world fisheries and aquaculture 2020. Sustainability in action. FAO, Rome. https://doi.org/10.4060/ca9229en

    Book  Google Scholar 

  • FAO (2022) The state of world fisheries and aquaculture 2022. Towards blue transformation. FAO, Rome. https://doi.org/10.4060/cc0461en

    Book  Google Scholar 

  • Feng R, Fang L, Cheng Y et al (2015) Retinoic acid homeostasis through aldh1a2 and cyp26a1 mediates meiotic entry in Nile tilapia (Oreochromis niloticus). Sci Rep 5(1):1–2

    CAS  Google Scholar 

  • Ghosh S, Lee S-M, Jung C, Meyer-Rochow VB (2017) Nutritional composition of five commercial edible insects in South Korea. J Asia Pacific Entomol 20:686–694. https://doi.org/10.1016/j.aspen.2017.04.003

    Article  Google Scholar 

  • Giri S, Daw TM, Hazra S, Troell M et al (2022) Economic incentives drive the conversion of agriculture to aquaculture in the Indian Sundarbans: livelihood and environmental implications of different aquaculture types. Ambio 18:1–5

    Google Scholar 

  • Gjedrem T, Rye M (2018) Selection response in fish and shellfish: a review. Rev Aquac 10(1):168–179. https://doi.org/10.1111/raq.12154

    Article  Google Scholar 

  • Gjedrem T, Robinson N, Rye M (2012) The importance of selective breeding in aquaculture to meet future demands for animal protein: a review. Aquaculture 350:117–129. https://doi.org/10.1016/j.aquaculture.2012.04.008

    Article  Google Scholar 

  • Gong J, Yu K, Shu L et al (2015) Evaluating the effects of temperature, salinity, starvation and autotomy on molting success, molting interval and expression of ecdysone receptor in early juvenile mud crabs, Scylla paramamosain. Aquaculture 464:11–17. https://doi.org/10.1016/j.jembe.2014.12.008

    Article  Google Scholar 

  • Gratacap RL, Wargelius A, Edvardsen RB et al (2019) Potential of genome editing to improve aquaculture breeding and production. Trends Genet 35(9):672–684. https://doi.org/10.1016/j.tig.2019.06.006

    Article  CAS  PubMed  Google Scholar 

  • Henriksson PJG, Rico A, Troell M et al (2018) Unpacking factors influencing antimicrobial use in global aquaculture and their implication for management: a review from a systems perspective. Sustain Sci 13:1105–1120

    Article  PubMed  Google Scholar 

  • Henriksson PJ, Banks LK, Suri SK et al (2019) Indonesian aquaculture futures—identifying interventions for reducing environmental impacts. Environ Res Lett 14(12):124062. https://doi.org/10.1088/1748-9326/ab4b79

    Article  Google Scholar 

  • Henriksson PJG, Troell M, Banks LK, Belton B, Beveridge MCM, Klinger DH, Pelletier N, Phillips MJ, Tran N (2021) Interventions for improving the productivity and environmental performance of global aquaculture for future food security. One Earth 4:1220–1232. https://doi.org/10.1016/j.oneear.2021.08.009

    Article  Google Scholar 

  • Jambo Y, Alemu A, Tasew W (2021) Impact of small-scale irrigation on household food security: evidence from Ethiopia. Agric Food Secur 10(1):1–16

    Article  Google Scholar 

  • Jiang DN, Yang HH, Li MH et al (2016) Gsdf is a downstream gene of dmrt1 that functions in the male sex determination pathway of the Nile tilapia. Mol Reprod Dev 83(6):497–508. https://doi.org/10.1002/mrd.22642

    Article  CAS  PubMed  Google Scholar 

  • Jiang D, Chen J, Fan Z et al (2017) CRISPR/Cas9-induced disruption of wt1a and wt1b reveals their different roles in kidney and gonad develop-ment in Nile tilapia. Dev Biol 428(1):63–73. https://doi.org/10.1016/j.ydbio.2017.05.017

    Article  CAS  PubMed  Google Scholar 

  • Jonell M, Phillips M, Rönnbäck P et al (2013) Eco-certification of farmed seafood: will it make a difference? Ambio 42:659–674

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaul S, Gulati N, Verma D et al (2018) Role of nanotechnology in cosmeceuticals: a review of recent advances. J Pharm 2018. https://doi.org/10.1155/2018/3420204

  • Khalil K, Elayat M, Khalifa E et al (2017) Generation of myostatin gene-edited channel catfish (Ictalurus punctatus) via zygote injection of CRISPR/ Cas9 system. Sci Rep 7(1):1–12

    Article  Google Scholar 

  • Kidane L, Kejela A (2021) Food security and environment conservation through sustainable use of wild and semi-wild edible plants: a case study in Berek Natural Forest, Oromia special zone, Ethiopia. Agric Food Secur. https://doi.org/10.1186/s40066-021-00308-7

  • Kishimoto K, Washio Y, Yoshiura Y et al (2018) Production of a breed of red sea bream Pagrus major with an increase of skeletal muscle muss and reduced body length by genome editing with CRISPR/Cas9. Aquaculture 495:415–427. https://doi.org/10.1016/j.aquaculture.2018.05.055

    Article  CAS  Google Scholar 

  • Klinger DH, Levin SA, Watson JR (2017) The growth of finfish in global open-ocean aquaculture under climate change. Proc R Soc B Biol Sci 284:20170834

    Article  Google Scholar 

  • Krause G, Le Vay L, Buck BH et al (2022) Prospects of low trophic marine aquaculture contributing to food security in a net zero-carbon world. Front Sustain Food Syst:209. https://doi.org/10.3389/fsufs.2022.875509

  • Kroetz K, Luque GM, Gephart JA et al (2020) Consequences of seafood mislabeling for marine populations and fisheries management. Proc Natl Acad Sci U S A 117:30318–30323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li MH, Sun Y, Zhao J et al (2015) A tandem duplicate of anti-MĂĽllerian hormone with a missense SNP on the Y chromosome is essential for male sex determination in Nile tilapia. Oreochromis niloticus PLoS Genet 11(11):e1005678. https://doi.org/10.1371/journal.pgen.1005678

    Article  CAS  PubMed  Google Scholar 

  • Li MH, Feng R, Ma H et al (2016) Retinoic acid triggers meiosis initiation via stra8-dependent pathway in Southern catfish, Silurus meridionalis. Gen Comp Endocrinol 232:191–198. https://doi.org/10.1016/j.ygcen.2016.01.003

    Article  CAS  PubMed  Google Scholar 

  • Malcorps W, Kok B, van’t Land M et al (2019) The sustainability conundrum of fishmeal substitution by plant ingredients in shrimp feeds. Sustainability 11(4): 1212

    Google Scholar 

  • Meyer-Rochow VB, Gahukar RT, Ghosh S, Jung C (2021) Chemical composition, nutrient quality and acceptability of edible insects are effected by species, developmental stage, gender, diet, and prcessing methods. Foods 10:1036. https://doi.org/10.3390/foods10051036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nabuuma D, Ekesa B, Faber M et al (2021) Community perspectives on food security and dietary diversity among rural smallholder farmers: a qualitative study in Central Uganda. J Agric Food Res. https://doi.org/10.1016/j.jafr.2021.100183

  • Qin Z, Li Y, Su B et al (2016) Editing of the luteinizing hormone gene to sterilize Channel Catfish, (Ictalurus punctatus), using a modified zinc finger nuclease technology with electroporation. Mar Biotechnol (NY) 18(2):255–263

    Article  CAS  PubMed  Google Scholar 

  • Rivera-Ferre MG, LĂłpez-i-Gelats F Howden M et al (2016) Re-framing the climate change debate in the livestock sector: mitigation and adaptation options. Wiley Interdiscip Rev Clim Chang 7: 869–892

    Google Scholar 

  • Robledo D, Palaiokostas C, Bargelloni L et al (2018) Applications of genotyping by sequencing in aquaculture breeding and genetics. Rev Aquac 10:670–682. https://doi.org/10.1111/raq.12193

    Article  PubMed  Google Scholar 

  • Shah BR, Mraz J (2020) Advances in nanotechnology for sustainable aquaculture and fisheries. Rev Aquac 12(2):925–942. https://doi.org/10.1111/raq.12356

    Article  Google Scholar 

  • Spicer A, Molnar A (2018) Gene editing of microalgae: Scientific progress and regulatory challenges in Europe. Biology 7(1):21. https://doi.org/10.3390/biology7010021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stentiford GD, Sritunyalucksana K, Flegel TW et al (2017) New paradigms to help solve the global aquaculture disease crisis. PLoS Pathog 13:1–6

    Article  Google Scholar 

  • Sunby J, Haward M, Fulton EA et al (2021) Hot fish: the response to climate change by regional fisheries bodies. Mar Policy 123:104284. https://doi.org/10.1016/j.marpol.2020.104284

    Article  Google Scholar 

  • Tacon AG (2020) Trends in global aquaculture and aquafeed production: 2000–2017. Rev Fish Sci Aquac 28(1):43–56. https://doi.org/10.1080/23308249.2019.1649634

    Article  Google Scholar 

  • Tacon AGJ, Metian M (2015) Feed matters: satisfying the feed demand of aquaculture. Rev Fish Sci Aquac 23:1–10

    Article  Google Scholar 

  • Tilami SK, Samples S (2018) Nutritional value of fish: lipids, proteins, vitamins, and minerals. Rev Fish Sci Aquac 26:243–253. https://doi.org/10.1080/23308249.2017.1399104

    Article  Google Scholar 

  • Tran N, Rodriguez U-P, Chan CY et al (2017) Indonesian aquaculture futures: an analysis of fish supply and demand in Indonesia to 2030 and role of aquaculture using the Asia fish model. Mar Policy 79:25–32

    Article  Google Scholar 

  • Tran HQ, Doan HV, Stejskal V (2021) Environmental consequences of using insect meal as an ingredient in aquafeeds: a systemic view. Rev Aquac 14:237–251. https://doi.org/10.1111/raq.12595

    Article  Google Scholar 

  • United Nations (2019) World population prospects. https://population.un.org/wpp/

  • Van Eenennaam AL (2017) Genetic modification of food animals. Curr Opin Biotechnol 44:27–34. https://doi.org/10.1016/j.copbio.2016.10.007

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Hamid N, Jia P et al (2021) A comprehensive review on genetically modified fish: key techniques, applications and future prospects. Rev Aquac Raq 13(3):1635–1660. https://doi.org/10.1111/raq.12538

    Article  CAS  Google Scholar 

  • Wargelius A (2019) Application of genome editing in aquatic farm animals: Atlantic salmon. Transgenic Res 28:101–105

    Article  CAS  PubMed  Google Scholar 

  • Wargelius A, Leininger S, Skaftnesmo KO et al (2016) Dnd knockout ablates germ cells and demonstrates germ cell independent sex differentiation in Atlantic salmon. Sci Rep 6(1):1–8

    Article  Google Scholar 

  • Watson JR, Armerin F, Klinger DH et al (2018) Resilience through risk management: cooperative insurance in smallholder aquaculture systems. Heliyon 4:e00799

    Article  PubMed  PubMed Central  Google Scholar 

  • Winther U, Hognes ES, Jafarzadeh S et al (2020) Greenhouse Gas Emissions of Norwegian Seafood Products in 2017 (SINTEF Ocean A S)

    Google Scholar 

  • Xie QP, He X, Sui YN et al (2016) Haploinsufficiency of SF-1 causes female to male sex reversal in Nile tilapia, Oreochromis niloticus. Endocrinology 157(6):2500–2514. https://doi.org/10.1210/en.2015-2049

    Article  CAS  PubMed  Google Scholar 

  • Yu H, Li H, Li Q et al (2019) Targeted gene disruption in Pacific oyster based on CRISPR/Cas9 ribonucleoprotein complexes. Mar Biotechnol 21(3):301–309

    Article  CAS  Google Scholar 

  • Zenger KR, Khatkar MS, Jones DB et al (2018) Genomic selection in aquaculture: application, limitations and opportunities with special reference to marine shrimp and pearl oysters. Front Genet:693. https://doi.org/10.3389/fgene.2018.00693

  • Zhang JS, Li ZJ, Wen GL et al (2016) Relationship between white spot syndrome virus (WSSV) loads and characterizations of water quality in Litopenaeus vannamei culture ponds during the tropical storm. Iran J Vet Res 17(3):210–214

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Liu M, Sadovy de Mitcheson Y et al (2020) Fishin for feed in China: facts, impacts and implications. Fish Fish 21:47–62

    Article  Google Scholar 

  • Zhong Z, Niu P, Wang M et al (2016) Targeted disruption of sp7 and myostatin with CRISPR-Cas9 results in severe bone defects and more muscular cells in common carp. Sci Rep 6(1):1–14

    Google Scholar 

  • Ziegler F, Hornborg S, Green BS et al (2016) Expanding the concept of sustainable seafood using Life Cycle Assessment. Fish Fish 17:1073–1093

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dewali, S. et al. (2023). Aquaculture: Contributions to Global Food Security. In: Ghosh, S., Kumari Panda, A., Jung, C., Singh Bisht, S. (eds) Emerging Solutions in Sustainable Food and Nutrition Security. Springer, Cham. https://doi.org/10.1007/978-3-031-40908-0_6

Download citation

Publish with us

Policies and ethics