Skip to main content

Cold-Water Coral Reefs of the Southeastern United States

  • Chapter
  • First Online:
Cold-Water Coral Reefs of the World

Abstract

The southeastern United States (SEUS), from North Carolina through southern Florida, has the most extensive cold-water coral reefs, including coral mounds and coral gardens, in the US Exclusive Economic Zone. In fact, a region extending from off central Florida to Georgia has been named the “Million Mounds” area and is estimated to contain tens-of-thousands of coral mounds. Oceanographic patterns in this region are dominated by the Gulf Stream and associated oceanographic events (i.e., eddies, meanders, intrusions). Therefore, corals in the SEUS often experience strong currents and rapid changes in environmental conditions, such as temperature and salinity. The Gulf Stream also serves as a conduit for dispersal of larvae, and thus coral populations throughout the area are highly connected, although there are some signatures of differentiation across a bathymetric gradient. The faunal community in the region is diverse and includes a characteristic deep-reef fauna that differs from areas off reef. While resource extraction activities in deep water are present in the region, the most significant anthropogenic threat to cold-water corals in the SEUS is climate change. Future research efforts should focus on our understanding of the interplay between changing environmental conditions and coral development, growth, physiology, and persistence. In addition, we need to better understand both abiotic and biotic processes that govern cold-water coral ecosystems in the region.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Addamo AM, Miller KJ, Häussermann V, Taviani M, Machordom A (2021) Global-scale genetic structure of a cosmopolitan cold-water coral species. Aquat Conserv 31(1):1–14. https://doi.org/10.1002/aqc.3421

    Article  Google Scholar 

  • Anderson W, Lindner M (1971) Contributions to the biology of the royal red shrimp, Hymenopenaeus robustus Smith. Fish Bull 69:313–336

    Google Scholar 

  • Androulidakis Y, Kourafalou V, Le Henaff M, Kang HS, Ntaganou N, Hu CM (2020) Gulf Stream evolution through the Straits of Florida: the role of eddies and upwelling near Cuba. Ocean Dyn 70(9):1281–1281. https://doi.org/10.1007/s10236-020-01393-1

    Article  Google Scholar 

  • Arrigoni R, Berumen ML, Mariappan KG, Beck PS, Hulver AM, Montano S, Pichon M, Strona G, Terraneo TI, Benzoni F (2020) Towards a rigorous species delimitation framework for scleractinian corals based on RAD sequencing: The case study of Leptastrea from the Indo-Pacific. Coral Reefs 39:1001–1025

    Article  Google Scholar 

  • Athie G, Sheinbaum J, Leben R, Ochoa J, Shannon MR, Candela J (2015) Interannual variability in the Yucatan Channel flow. Geophys Res Lett 42(5):1496–1503. https://doi.org/10.1002/2014gl062674

    Article  Google Scholar 

  • Atkinson LP (1983) Distribution of Antarctic Immediate Water over the Blake Plateau. J Geophys Res Oceans 88(NC8):4699–4704. https://doi.org/10.1029/JC088iC08p04699

    Article  Google Scholar 

  • Auster PJ (2005) Are deep-water corals important habitats for fishes? In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Erlangen earth conference series. Springer, Berlin, pp 747–760. https://doi.org/10.1007/3-540-27673-4_39

    Chapter  Google Scholar 

  • Avise JC (1992) Molecular population structure and the biogeographic history of a regional fauna: a case history with lessons for conservation biology. Oikos 63:62–76

    Article  CAS  Google Scholar 

  • Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, Cambridge, MA

    Book  Google Scholar 

  • Avise JC, Reeb CA, Saunders NC (1987) Geographic population structure and species differences in mitochondrial DNA of mouthbrooding marine catfishes (Ariidae) and demersal spawning toadfishes (Batrachoididae). Evol 41:991–1002

    Article  Google Scholar 

  • Ayers MW, Pilkey OH (1981) Piston core and surficial sediment investigations of the Florida-Hatteras Slope and inner Blake Plateau. In: Popenoe P (ed) Environmental geologic studies on the southeastern Atlantic outer continental shelf. USGS Open File Rept. 81-582-A. pp 5.1–5.89

    Google Scholar 

  • Baillon S, Hamel JF, Wareham VE, Mercier A (2012) Deep cold-water corals as nurseries for fish larvae. Front Ecol Environ 10(7):351–356

    Article  Google Scholar 

  • Ballard RD, Uchupi E (1971) Geological Observations of Miami Terrace from Submersible Ben-Franklin. Mar Technol Soc J 5(2):43

    Google Scholar 

  • Bane JM, Dewar WK (1988) Gulf Stream bimodality and variability downstream of the Charleston Bump. J Geophys Res Oceans 93(C6):6695–6710. https://doi.org/10.1029/JC093iC06p06695

    Article  Google Scholar 

  • Bane JM, Atkinson LP, Brooks DA (2001) Gulf Stream physical oceanography at the Charleston Bump: deflection, bimodality, meanders, and upwelling. In: Sedberry GR (ed) Island in the stream: oceanography and fisheries of the Charleston Bump, Amer Fish Soc Symp 25, Bethesda, MD, pp 25–36

    Google Scholar 

  • BOEM (2014). https://www.boem.gov/sites/default/files/oil-and-gas-energy-program/Resource-Evaluation/Resource-Assessment/Assessment-of-Oil-and-Gas-Resources-2014-Update.pdf. Accessed 1 Sept 2020

  • BOEM (2020). https://www.boem.gov/oil-gas-energy/atlantic-oil-and-gas-information. Accessed 1 Sept 2020

  • Bracco A, Liu G, Galaska MP, Quattrini AM, Herrera S (2019) Integrating physical circulation models and genetic approaches to investigate population connectivity in deep-sea corals. J Mar Syst 198:103189

    Article  Google Scholar 

  • Briggs JC (1974) Marine zoogeography. McGraw-Hill, New York

    Google Scholar 

  • Brooke S, Jarnegren J (2013) Reproductive periodicity of the deep-water scleractinian coral, Lophelia pertusa from the Trondheim Fjord, Norway. Mar Biol 160:139–153

    Article  Google Scholar 

  • Brooke S, Ross SW (2014) First observations of the cold-water coral Lophelia pertusa in mid-Atlantic canyons of the USA. Deep Sea Res Pt II 104:245–251

    Article  CAS  Google Scholar 

  • Brooke S, Ross SW, Bane JM, Seim HE, Young CM (2013) Temperature tolerance of the deep-sea coral Lophelia pertusa from the southeastern United States. Deep Sea Res Pt II 92:240–248

    Article  Google Scholar 

  • Brooke SD, Watts MW, Heil AD, Rhode M, Mienis F, Duineveld GCA, Davies AJ, Ross SW (2017) Distributions and habitat associations of deep-water corals in Norfolk and Baltimore Canyons, Mid-Atlantic Bight, USA. Deep Sea Res Pt II 137:131–147. https://doi.org/10.1016/j.dsr2.2016.05.008

    Article  Google Scholar 

  • Buhl-Mortensen L, Mortensen PB (2005) Distribution and diversity of species associated with deep-sea gorgonian corals off Atlantic Canada. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Erlangen earth conference series. Springer, Berlin, pp 849–879

    Google Scholar 

  • Buhl-Mortensen L, Vanreusel A, Gooday AJ, Levin LA, Priede IG, Buhl-Mortensen P, Gheerardyn H, King NJ, Raes M (2010) Biological structures as a source of habitat heterogeneity and biodiversity on the deep ocean margins. Mar Ecol 31:21–50. https://doi.org/10.1111/j.1439-0485.2010.00359.x

    Article  Google Scholar 

  • Büscher JV, Form AU, Riebesell U (2017) Interactive effects of ocean acidification and warming on growth, fitness and survival of the cold-water coral Lophelia pertusa under different food availabilities. Front Mar Sci 4:101

    Article  Google Scholar 

  • Caesar L, McCarthy GD, Thornalley DJ, Cahill N, Rahmstorf S (2021) Current Atlantic meridional overturning circulation weakest in last millennium. Nat Geosci 14(3):118–120

    Article  CAS  Google Scholar 

  • Cantwell K, Sautter L, Morrison C, Sowers DC, Bowman A (2020) EX-18-06: Windows to the deep 2018 cruise report. OER Expedition Rep. 18-06. https://doi.org/10.25923/50hx-3p68

  • Cavender-Bares J, Kozak KH, Fine PVA, Kembel SW (2009) The merging of community ecology and phylogenetic biology. Ecol Lett 12(7):693–715

    Article  PubMed  Google Scholar 

  • Commeau R, Clark A, Manheim F, Aruscavage P, Johnson C, Lane CM (1984) Ferromanganese crust resources in the Pacific and Atlantic Oceans. In: Oceans 1984. IEEE, pp 421–430. https://doi.org/10.1109/OCEANS.1984.1152203

  • Cordes EE, McGinley M, Podowski EL, Becker EL, Lessard-Pilon S, Viada S, Fisher CR (2008) Coral communities of the deep Gulf of Mexico. Deep Sea Res I 55:777–787

    Article  Google Scholar 

  • Correa TBS, Eberli GP, Grasmueck M, Reed JK, Correa AMS (2012a) Genesis and morphology of cold-water coral ridges in a unidirectional current regime. Mar Geol 326:14–27. https://doi.org/10.1016/j.margeo.2012.06.008

    Article  Google Scholar 

  • Correa TBS, Grasmueck M, Eberli GP, Reed JK, Verwer K, Purkis S (2012b) Variability of cold-water coral mounds in a high sediment input and tidal current regime, Straits of Florida. Sedimentology 59(4):1278–1304. https://doi.org/10.1111/j.1365-3091.2011.01306.x

    Article  Google Scholar 

  • Costello MJ, McCrea M, Freiwald A, Lundälv T, Jonsson L, Bett BJ, van Weering TC, de Haas H, Roberts JM, Allen D (2005) Role of cold-water Lophelia pertusa coral reefs as fish habitat in the NE Atlantic. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Erlangen earth conference series. Springer, Berlin, pp 771–805

    Chapter  Google Scholar 

  • Cunningham CW, Collins TM (1998) Beyond area relationships: extinction and recolonization in molecular marine biogeography. In: DeSalle R, Schierwater B (eds) Molecular approaches to ecology and evolution. Birkhäuser, Basel, pp 297–321

    Chapter  Google Scholar 

  • Dahl MP, Pereyra RT, Lundälv T, André C (2012) Fine-scale spatial genetic structure and clonal distribution of the cold-water coral Lophelia pertusa. Coral Reefs 31(4):1135–1148

    Article  Google Scholar 

  • Davies AJ, Guinotte JM (2011) Global habitat suitability for framework-forming cold-water corals. PLoS One 6(4):e18483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies AJ, Duineveld GC, Lavaleye MS, Bergman MJ, van Haren H, Roberts JM (2009) Downwelling and deep-water bottom currents as food supply mechanisms to the cold-water coral Lophelia pertusa (Scleractinia) at the Mingulay Reef Complex. Limnol Oceanogr 54(2):620–629

    Article  Google Scholar 

  • Dodds LA, Roberts JM, Taylor AC, Marubini F (2007) Metabolic tolerance of the cold-water coral Lophelia pertusa (Scleractinia) to temperature and dissolved oxygen change. J Exp Mar Biol Ecol 349(2):205–214

    Article  CAS  Google Scholar 

  • Dorey N, Gjelsvik Ø, Kutti T, Büscher JV (2020) Broad thermal tolerance in the cold-water coral Lophelia pertusa from Arctic and Boreal Reefs. Front Phys 10:1636

    Article  Google Scholar 

  • Drazen JC, Smith CR, Gjerde KM et al (2020) Opinion: Midwater ecosystems must be considered when evaluating environmental risks of deep-sea mining. PNAS 117(30):17455–17460. https://doi.org/10.1073/pnas.2011914117

    Article  PubMed  PubMed Central  Google Scholar 

  • Erickson KL, Pentico A, Quattrini AM, McFadden CS (2021) New approaches to species delimitation and population structure of anthozoans: two case studies of octocorals using ultraconserved elements and exons. Mol Ecol Res 21(1):78–92

    Article  CAS  Google Scholar 

  • Etnoyer P, Warrenchuk J (2007) A catshark nursery in a deep gorgonian field in the Mississippi Canyon, Gulf of Mexico. Bull Mar Sci 81(3):553–559

    Google Scholar 

  • Etter RJ, Bower AS (2015) Dispersal and population connectivity in the deep North Atlantic estimated from physical transport processes. Deep Sea Res Pt I 104:159–172

    Article  Google Scholar 

  • Etter RJ, Rex MA, Chase MC, Quattro JM (2005) Population differentiation decreases with depth in deep-sea bivalves. Evol 59(7):1479–1491

    Google Scholar 

  • Fernholm B, Quattrini AM (2008) A new species of hagfish (Myxinidae: Eptatretus) associated with deep-sea coral habitat in the western North Atlantic. Copeia 2008(1):126–132

    Article  Google Scholar 

  • Fontela M, Pérez FF, Carracedo LI, Padín XA, Velo A, García-Ibañez MI, Lherminier P (2020) The Northeast Atlantic is running out of excess carbonate in the horizon of cold-water corals communities. Sci Rep 10(1):1–10

    Article  Google Scholar 

  • Form AU, Riebesell U (2012) Acclimation to ocean acidification during long-term CO2 exposure in the cold-water coral Lophelia pertusa. Global Change Biol 18(3):843–853

    Article  Google Scholar 

  • Fratantoni PS, Lee TN, Podesta GP, Muller-Karger F (1998) The influence of loop current perturbations on the formation and evolution of Tortugas eddies in the southern Straits of Florida. J Geophys Res Oceans 103(C11):24759–24779. https://doi.org/10.1029/98jc02147

    Article  Google Scholar 

  • Freiwald A (2002) Reef-forming cold-water corals. In: Wefer G, Billeit D, Hebbeln D, Jørgensen BB, Schlüter M, Van Weering T (eds) Ocean margin systems. Springer, Berlin, pp 365–385

    Chapter  Google Scholar 

  • Galgani F, Hanke G, Maes T (2015) Global distribution, composition and abundance of marine litter. In: Bergmann M, Gutow L, Klages M (eds) Marine anthropogenic litter. Springer, Cham

    Google Scholar 

  • Gallagher ML, Ambrose WG Jr, Renaud PE (1998) Comparative studies in biochemical composition of benthic invertebrates (bivalves, ophiuroids) from the Northeast Water (NEW) Polynya. Polar Biol 19:167–171

    Article  Google Scholar 

  • Gardner JV, Field ME, Twichell DC (eds) (1996) Geology of the United States’ seafloor: the view from GLORIA. Cambridge University Press

    Google Scholar 

  • Gartner JV, Sulak KJ, Ross SW, Necaise AM (2008) Persistent near-bottom aggregations of mesopelagic animals along the North Carolina and Virginia continental slopes. Mar Biol 153(5):825–841

    Article  Google Scholar 

  • George RY (2002) Ben Franklin temperate reef and deep sea ‘Agassiz Coral Hills’ in the Blake Plateau off North Carolina. Hydrobiologia 471(1–3):71–81. https://doi.org/10.1023/A:1016545102459

    Article  Google Scholar 

  • Girard F, Fu B, Fisher CR (2016) Mutualistic symbiosis with ophiuroids limited the impact of the Deepwater Horizon oil spill on deep-sea octocorals. Mar Ecol Prog Ser 49:89–98

    Article  Google Scholar 

  • Gomberg DN (1976) Geology of the Pourtalès Terrace, Straits of Florida. Dissertation, University of Miami, Florida

    Google Scholar 

  • Gómez CE, Wickes L, Deegan D, Etnoyer PJ, Cordes EE (2018) Growth and feeding of deep-sea coral Lophelia pertusa from the California margin under simulated ocean acidification conditions. PeerJ 6:e5671

    Article  PubMed  PubMed Central  Google Scholar 

  • Gasbarro R, Sowers D, Margolin A, Cordes EE (2022) Distribution and predicted climatic refugia for a reef‐building cold‐water coral on the southeast US margin. Glob Chang Biol 28(23):7108–7125

    Article  CAS  PubMed  Google Scholar 

  • Grasmueck M, Eberli GP, Viggiano DA, Correa T, Rathwell G, Luo JG (2006) Autonomous underwater vehicle (AUV) mapping reveals coral mound distribution, morphology, and oceanography in deep water of the Straits of Florida. Geophys Res Lett 33(23):6. https://doi.org/10.1029/2006gl027734

    Article  Google Scholar 

  • Gress E, Andradi-Brown DA, Woodall L, Schofield PJ, Stanley K, Rogers AD (2017) Lionfish (Pterois spp.) invade the upper-bathyal zone in the western Atlantic. PeerJ 5:e3683

    Article  PubMed  PubMed Central  Google Scholar 

  • Guinotte JM, Orr J, Cairns S, Freiwald A, Morgan L, George R (2006) Will human-induced changes in seawater chemistry alter the distribution of deep-sea scleractinian corals? Front Ecol Environ 4(3):141–146

    Article  Google Scholar 

  • Gula J, Molemaker MJ, McWilliams JC (2015) Gulf Stream dynamics along the southeastern US seaboard. J Phys Oceanogr 45(3):690–715. https://doi.org/10.1175/jpo-d-14-0154.1

    Article  Google Scholar 

  • Harrison P (2011) Sexual reproduction of scleractinian corals. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer, New York, pp 59–85

    Chapter  Google Scholar 

  • Harter S, Ribera M, Shepard A, Reed J (2009) Assessment of fish populations and habitat on Oculina Bank, a deep-sea coral marine protected area off eastern Florida. Fish Bull 107(2):195–206

    Google Scholar 

  • Harter S, Reed J, Farrington S, David A (2020) South Atlantic MPAs and Oculina HAPC: Characterization of benthic habitat and biota. NOAA Ship Pisces Cruise 19-02. NOAA CIOERT Cruise Report, pp 388

    Google Scholar 

  • Hebbeln D, Portilho-Ramos RD, Wienberg C, Titschack J (2019) The fate of cold-water corals in a changing world: a geological perspective. Front Mar Sci 6:119

    Article  Google Scholar 

  • Heiderich J, Todd RE (2020) Along-stream evolution of Gulf Stream volume transport. J Phys Oceanogr 50(8):2251–2270. https://doi.org/10.1175/jpo-d-19-0303.1

    Article  Google Scholar 

  • Hennige SJ, Wolfram U, Wickes L, Murray F, Roberts JM, Kamenos NA, Schofield S, Groetsch A, Spiesz EM, Aubin-Tam ME, Etnoyer PJ (2020) Crumbling reefs and cold-water coral habitat loss in a future ocean: evidence of “Coralporosis” as an indicator of habitat integrity. Front Mar Sci 7:668

    Article  Google Scholar 

  • Henry LA, Nizinski MS, Ross SW (2008) Occurrence and biogeography of hydroids (Cnidaria: Hydrozoa) from deep-water coral habitats off the southeastern United States. Deep Sea Res Pt I 55(6):788–800

    Article  Google Scholar 

  • Herrera S, Shank TM (2016) RAD sequencing enables unprecedented phylogenetic resolution and objective species delimitation in recalcitrant divergent taxa. Mol Phyl Evol 100:70–79

    Article  Google Scholar 

  • Herrera S, Baco A, Sánchez JA (2010) Molecular systematics of the bubblegum coral genera (Paragorgiidae, Octocorallia) and description of a new deep-sea species. Mol Phylogenet Evol 55(1):123–135

    Article  PubMed  Google Scholar 

  • Hourigan TF, Cairns S, Reed J, Ross S (2017a) Deep-sea coral taxa in the U.S. Southeast Region: depth and geographical distribution. Online resource: https://deepseacoraldata.noaa.gov/library/2017-state-of-deep-sea-corals-report

  • Hourigan TF, Reed J, Pomponi S, Ross S, David A, Harter S (2017b) State of deep-sea coral and sponge ecosystems of the Southeast United States. In: Hourigan T, Etnoyer P, Cairns S (eds) The state of deep-sea coral and sponge ecosystems of the United States. NOAA Tech Memo NMFS-OHC-4, Silver Spring, MD, p 60

    Google Scholar 

  • Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. In: Samson FB, Knopf FL (eds) Ecosystem management. Springer, New York, pp 130–147

    Chapter  Google Scholar 

  • Jordan GF, Malloy RJ, Kofoed JW (1964) Bathymetry and geology of Pourtalès Terrace, Florida. Mar Geol 1(3):259–287. https://doi.org/10.1016/0025-3227(64)90063-5

    Article  Google Scholar 

  • Kinlan BP, Poti M, Hourigan T, Dorfman D, Caldow C (2013) Digital data: Predictive models of deep-sea coral habitat suitability in the U.S. Southeast region. Released August 2013. Available at: https://nccospublicstor.blob.core.windows.net/projects-attachments/35/DSC_PredictiveModeling_US_Southeast.zip

  • Koenig CC, Coleman FC, Grimes CB, Fitzhugh GR, Scanlon KM, Gledhill CT, Grace M (2000) Protection of fish spawning habitat for the conservation of warm-temperate reef-fish fisheries of shelf-edge reefs of Florida. Bull Mar Sci 66(3):593–616

    Google Scholar 

  • Land LA, Paull CK (2000) Submarine karst belt rimming the continental slope in the Straits of Florida. Geo Mar Lett 20(2):123–132. https://doi.org/10.1007/s003670000041

    Article  Google Scholar 

  • Larsson AI, Järnegren J, Strömberg SM, Dahl MP, Lundälv T, Brooke S (2014) Embryogenesis and larval biology of the cold-water coral Lophelia pertusa. PLoS One 9(7):e102222

    Article  PubMed  PubMed Central  Google Scholar 

  • Le Bras IA, Yashayaev I, Toole JM (2017) Tracking Labrador sea water property signals along the deep western boundary. Curr J Geophys Res Oceans 122:5348–5366. https://doi.org/10.1002/2017JC012921

    Article  Google Scholar 

  • Lee TN, Atkinson LP (1983) Low frequency current and temperature variability from Gulf Stream frontal eddies and atmospheric forcing along the Southeast United States outer continental shelf. J Geophys Res Oceans 88:4541–4567. https://doi.org/10.1029/JC088iC08p04541

    Article  Google Scholar 

  • Lee TN, Yoder JA, Atkinson LP (1991) Gulf Stream frontal eddy influence on productivity of the Southeast US continental shelf. J Geophys Res 96:22191–22205

    Article  Google Scholar 

  • Legeckis RV (1979) Satellite observations of the influence of bottom topography on the seaward deflection of the Gulf Stream off Charleston, South Carolina. J Phys Oceanogr 9:483–497

    Article  Google Scholar 

  • Le Goff-Vitry MC, Pybus OG, Rogers AD (2004) Genetic structure of the deep-sea coral Lophelia pertusa in the northeast Atlantic revealed by microsatellites and internal transcribed spacer sequences. Mol Ecol 13(3):537–549

    Article  CAS  PubMed  Google Scholar 

  • Lessard-Pilon S, Podowski EL, Cordes EE, Fisher CR (2010) Lophelia pertusa as a habitat resource in the deep Gulf of Mexico. Deep Sea Res II 57:1882–1890

    Article  Google Scholar 

  • Leterme SC, Pingree RD (2008) The Gulf Stream, rings and North Atlantic eddy structures from remote sensing (Altimeter and SeaWiFS). J Mar Syst 69:177–190

    Article  Google Scholar 

  • Leydet KP, Grupstra CGB, Coma R, Ribes M, Hellberg ME (2018) Host-targeted RAD-Seq reveals genetic changes in the coral Oculina patagonica associated with range expansion along the Spanish Mediterranean coast. Mol Ecol 27:2529–2543

    Article  CAS  PubMed  Google Scholar 

  • Litvinova NM (1980) Ways of feeding in some species of brittle stars. Zool Zh 59:239–247

    Google Scholar 

  • Lovrich GA, Thiel M (2011) Ecology, physiology, feeding and trophic role of squat lobsters. In: Poore GCB, Ahyong ST, Taylor J (eds) The biology of squat lobsters. CSIRO, Melbourne, pp 183–222

    Google Scholar 

  • Lunden JJ, Georgian SE, Cordes EE (2013) Aragonite saturation states at cold-water coral reefs structured by Lophelia pertusa in the northern Gulf of Mexico. Limnol Oceanogr 58:354–362

    Article  Google Scholar 

  • Lunden JJ, McNicholl CG, Sears CR, Morrison CL, Cordes EE (2014) Acute survivorship of the deep-sea coral Lophelia pertusa from the Gulf of Mexico under acidification, warming, and deoxygenation. Front Mar Sci 1(78):1–12

    Google Scholar 

  • Lusty PA, Murton BJ (2018) Deep-ocean mineral deposits: metal resources and windows into earth processes. Elements 14(5):301–306

    Article  CAS  Google Scholar 

  • Mah CL (2020) New species, occurrence records and observations of predation by deep-sea Asteroidea (Echinodermata) from the North Atlantic by NOAA ship Okeanos Explorer. Zootaxa 4766(2):201–260. https://doi.org/10.11646/zootaxa.4766.2.1

    Article  Google Scholar 

  • Mah CL, Nizinski M, Lundsten L (2010) Phylogenetic revision of the Hippasterinae (Goniasteridae; Asteroidea): systematics of deep sea corallivores, including one new genus and three new species. Zool J Linn Soc 160:266–301

    Article  Google Scholar 

  • Malloy RJ, Hurley RJ (1970) Geomorphology and geologic structure: Straits of Florida. Geol Soc Am Bull 81(7):1947–1972

    Article  Google Scholar 

  • Manheim FT (1986) Marine cobalt resources. Science 232(4750):600–608

    Article  CAS  PubMed  Google Scholar 

  • Matos L, Mienis F, Wienberg C, Frank N, Kwiatkowski C, Groeneveld J, Thil F, Abrantes F, Cunha MR, Hebbeln D (2015) Interglacial occurrence of cold-water corals off Cape Lookout (NW Atlantic): first evidence of the Gulf Stream influence. In: Deep sea research part I: oceanographic research papers, vol 105. Vancouver, pp 158–170

    Google Scholar 

  • Matrai PA, Cooper DJ, Saltzman ES (1996) Frontal enhancement of dimethylsulfide concentrations across a Gulf Stream meander. J Mar Syst 7(1):1–8

    Article  Google Scholar 

  • McCartney MA, Burton ML, Lima TG (2013) Mitochondrial DNA differentiation between populations of black sea bass (Centropristis striata) across Cape Hatteras, North Carolina (USA). J Biogeogr 40:1386–1398

    Article  Google Scholar 

  • McCosker JE, Ross SW (2007) A new deepwater species of the snake eel genus Ophichthus (Anguilliformes: Ophichthidae) from North Carolina. Copeia 2007(4):783–787

    Article  Google Scholar 

  • Meinen CS, Baringer MO, Garcia RF (2010) Florida Current transport variability: an analysis of annual and longer-period signals. Deep Sea Res Pt I 57(7):835–846. https://doi.org/10.1016/j.dsr.2010.04.001

    Article  Google Scholar 

  • Meinen CS, Johns WE, Moat B, Smith RH, Johns EM, Rayner D, Frajka-Williams E, Garcia RF, Garzoli SL (2019) Structure and variability of the Antilles Current at 26.5°N. J Geophys Res Oceans 124(6):3700–3723. https://doi.org/10.1029/2018jc014836

    Article  Google Scholar 

  • Meister HS, Wyanski DM, Loefer JK, Ross SW, Quattrini AM, Sulak KJ (2005) Further evidence for the invasion and establishment of Pterois volitans (Teleostei: Scorpaenidae) along the Atlantic coast of the United States. Southeast Nat 4(2):193–206

    Article  Google Scholar 

  • Messing CG, Neumann AC, Lang JC (1990) Biozonation of deep-water lithoherms and associated hardgrounds in the northeastern Straits of Florida. Palaios 5(1):15–33

    Article  Google Scholar 

  • Messing CG, Reed JK, Brooke SD, Ross SW (2008) Deepwater coral reefs of the United States. In: Riegl B, Dodge RE (eds) Coral reefs of the USA. Coral reefs of the world, vol 1. Springer, Dordrecht, pp 767–791. https://doi.org/10.1007/978-1-4020-6847-8_21

    Chapter  Google Scholar 

  • Middelburg JJ, Mueller CE, Veuger B, Larsson AI, Form A, Oevelen DV (2015) Discovery of symbiotic nitrogen fixation and chemoautotrophy in cold-water corals. Sci Rep 5(1):17962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mienis F, De Stigter HC, White M, Duineveld G, De Haas H, Van Weering TCE (2007) Hydrodynamic controls on cold-water coral growth and carbonate-mound development at the SW and SE Rockall Trough Margin, NE Atlantic Ocean. Deep Sea Res Pt I 54(9):1655–1674

    Article  Google Scholar 

  • Mienis F, Duineveld GCA, Davies AJ, Ross SW, Seim H, Bane J, Van Weering TCE (2012) The influence of near-bed hydrodynamic conditions on cold-water corals in the Viosca Knoll area, Gulf of Mexico. Deep Sea Res Pt I 60:32–45

    Article  Google Scholar 

  • Mienis F, Duineveld GCA, Davies AJ, Lavaleye MMS, Ross SW, Seim H, Bane J, Van Haren H, Bergman MJN, De Haas H, Brooke S (2014) Cold-water coral growth under extreme environmental conditions, the Cape Lookout area, NW Atlantic. Biogeosciences 11(9):2543–2560

    Article  Google Scholar 

  • Morato T, González-Irusta JM, Dominguez-Carrió C, Wei CL, Davies A, Sweetman AK, Taranto GH, Beazley L, García-Alegre A, Grehan A, Laffargue P (2020) Climate-induced changes in the suitable habitat of cold-water corals and commercially important deep-sea fishes in the North Atlantic. Glob Chang Biol 26(4):2181–2202. https://doi.org/10.1111/gcb.14996

    Article  PubMed  PubMed Central  Google Scholar 

  • Morrison CL, Ross SW, Nizinski MS, Brooke S, Waller RG, Johnson RL, King TL (2011) Genetic discontinuity among regional populations of Lophelia pertusa in the North Atlantic Ocean. Conserv Genet 12(3):713–729

    Article  Google Scholar 

  • Morrison CL, Coykendall DK, Springmann MJ, Shroades KM, Sanders LR, Waller RG, Ross SW, Brooke SD (2017) Scleractinian coral biodiversity and patterns of inter-canyon connectivity among four coral species. In: CSA Ocean Sciences Inc, Ross S, Brooke S et al (eds) Exploration and research of Mid-Atlantic Deepwater hard bottom habitats and shipwrecks with emphasis on canyons and coral communities: Atlantic deepwater canyons study. OCS Study BOEM 2017-060. U.S. Department of the Interior, Bureau of Ocean Energy Management, Sterling, VA

    Google Scholar 

  • Mortensen PB, Fosså JH (2006) Species diversity and spatial distribution of invertebrates on deep-water Lophelia reefs in Norway. In: Proceedings of 10th international coral reef symposium 2006, pp 1849–1868

    Google Scholar 

  • Mullins HT, Newton CR, Heath K, Vanburen HM (1981) Modern deep-water coral mounds north of Little Bahama Bank—criteria for recognition of deep-water coral bioherms in the rock record. J Sediment Petrol 51(3):999–1013

    Google Scholar 

  • Muñoz RC, Currin CA, Whitfield PE (2011) Diet of invasive lionfish on hard bottom reefs of the Southeast USA: insights from stomach contents and stable isotopes. Mar Ecol Prog Ser 432:181–193

    Article  Google Scholar 

  • Naumann MS, Orejas C, Ferrier-Pagès C (2014) Species-specific physiological response by the cold-water corals Lophelia pertusa and Madrepora oculata to variations within their natural temperature range. Deep Sea Res Pt II 99:36–41

    Article  CAS  Google Scholar 

  • Neumann AC, Ball MM (1970) Submersible observations in the Straits of Florida: geology and bottom currents. Geol Soc Am Bull 81(10):2861–2874

    Article  Google Scholar 

  • Neumann AC, Kofoed J, Keller GH (1977) Lithoherms in the Straits of Florida. Geology 5(1):4–10

    Article  Google Scholar 

  • Newton CR, Mullins HT, Gardulski AF, Hine AC, Dix GR (1987) Coral mounds on the West Florida slope: unanswered questions regarding the development of deep-water banks. Palaios 2(4):359–367

    Article  CAS  Google Scholar 

  • NOAA Fisheries (2020). https://www.fisheries.noaa.gov/management-plan/south-atlantic-golden-crab-fishery-management-plan. Accessed 1 Sept 2020

  • Pape-Lindstrom PA, Feller RJ, Stancyk SE, Woodin SA (1997) Sublethal predation: field measurements of arm tissue loss from the ophiuroid Microphiopholis gracillima and immunochemical identification of its predators in North Inlet, South Carolina, USA. Mar Ecol Prog Ser 156:131–140

    Article  Google Scholar 

  • Partyka ML, Ross SW, Quattrini AM, Sedberry GR, Birdsong TW, Potter J, Gottfried S (2007) Southeastern United States deep-sea corals (SEADESC) initiative: a collaboration to characterize areas of habitat forming deep-sea corals. Silver Spring, MD

    Google Scholar 

  • Paull CK, Dillon WP (1979) The subsurface geology of the Florida-Hatteras slope and inner Blake Plateau. US Geol Surv Open-File Rept No 79-448. https://doi.org/10.3133/ofr79448

  • Paull C, Neumann A, Am Ende BA, Ussler W III, Rodriguez N (2000) Lithoherms on the Florida–Hatteras slope. Mar Geol 166(1):83–101

    Article  Google Scholar 

  • Pearson M, Gage JD (1984) Diets of some deep-sea brittle stars in the Rockall Trough. Mar Biol 82(3):247–258

    Article  Google Scholar 

  • Pickart RS (1992) Water mass components of the North Atlantic deep western boundary current. Deep Sea Res Pt A 39(9):1553–1572. https://doi.org/10.1016/0198-0149(92)90047-W

    Article  CAS  Google Scholar 

  • Pickart RS, Smethie WM (1993) How does the deep western boundary current cross the Gulf Stream. J Phys Oceanogr 23(12):2602–2616

    Article  Google Scholar 

  • Popenoe P (1994) Bottom character map of the northern Blake Plateau. US Geol Surv Open-File Rept No. 93-724. https://doi.org/10.3133/ofr93724

  • Popenoe P, Manheim FT (2001) Origin and history of the Charleston Bump-geological formations, currents, bottom conditions, and their relationship to wreckfish habitats on the Blake Plateau. In: Sedberry GR (ed) Island in the stream: oceanography and fisheries of the Charleston Bump, Amer Fish Soc Symp 25, Bethesda, MD, pp 43–94

    Google Scholar 

  • Pratt RM, Heezen BC (1964) Topography of the Blake Plateau. Deep Sea Res Pt II 11(5):721–728

    Google Scholar 

  • Prouty NG, Roark EB, Koenig AE, Demopoulos AWJ, Batista FC, Kocar BD, Selby D, McCarthy MD, Mienis F, Ross SW (2014) Deep-sea coral record of human impact on watershed quality in the Mississippi River Basin. Global Biogeochem Cycles 28:29–43. https://doi.org/10.1002/2013GB004754

    Article  CAS  Google Scholar 

  • Prouty NG, Mienis F, Campbell-Swarzenski P, Roark EB, Davies AJ, Robertson CM, Duineveld G, Ross SW, Rhode M, Demopoulos AWJ (2017) Seasonal variability in the source and composition of particulate matter in the depositional zone of Baltimore Canyon, U.S. Mid-Atlantic Bight. Deep Sea Res Pt I 127:77–89. https://doi.org/10.1016/j.dsr.2017.08.004

    Article  CAS  Google Scholar 

  • Quattrini AM, Ross SW, Carlson MCT, Nizinski MS (2012) Megafaunal-habitat associations at a deep-sea coral mound off North Carolina, USA. Mar Biol 159(5):1079–1094

    Article  Google Scholar 

  • Quattrini AM, Etnoyer PJ, Doughty C, English L, Falco R, Remona N, Rittinghouse M, Cordes EE (2014) A phylogenetic approach to octocoral community structure in the deep Gulf of Mexico. Deep Sea Res Pt II 99:92–102. https://doi.org/10.1016/j.dsr2.2013.05.027

    Article  Google Scholar 

  • Quattrini AM, Baums IB, Shank TM, Morrison CL, Cordes EE (2015) Testing the depth-differentiation hypothesis in a deepwater octocoral. Proc R Soc B 282:20150008

    Article  PubMed  PubMed Central  Google Scholar 

  • Quattrini AM, Wu T, Soong K, Jeng M-S, Benayahu Y, McFadden CS (2019) A next generation approach to species delimitation reveals the role of hybridization in a cryptic species complex of corals. BMC Evol Biol 19:116. https://doi.org/10.1186/s12862-019-1427-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Quattrini AM, Rodríguez E, Faircloth BC, Cowman PF, Brugler MR, Farfan GA, Hellberg ME, Kitahara MV, Morrison CL, Paz-García DA, Reimer JD, McFadden CS (2020) Palaeoclimate ocean conditions shaped the evolution of corals and their skeletons through deep time. Nat Ecol Evol. https://doi.org/10.1038/s41559-020-01291-1

  • Radice VZ, Quattrini AM, Wareham VE, Edinger EN, Cordes EE (2016) Vertical water mass structure in the North Atlantic influences the bathymetric distribution of species in the deep-sea coral genus Paramuricea. Deep Sea Res Pt I 116:253–263

    Article  CAS  Google Scholar 

  • Reed JK (1980) Distribution and structure of deep-water Oculina varicosa coral reefs off central eastern Florida. Bull Mar Sci 30(3):667–677

    Google Scholar 

  • Reed JK (1981) In situ growth rates of the scleractinian coral Oculina varicosa occurring with zooxanthellae on 6-m reefs and without on 80-m banks. Proc Fourth Int Coral Reef Symp 2:201–206

    Google Scholar 

  • Reed JK (2002a) Comparison of deep-water coral reefs and lithoherms off southeastern USA. Hydrobiologia 471(1–3):57–69. https://doi.org/10.1023/A:1016593018389

    Article  Google Scholar 

  • Reed JK (2002b) Deep-water Oculina coral reefs of Florida: biology, impacts, and management. Hydrobiologia 471(1–3):43–55. https://doi.org/10.1023/A:1016588901551

    Article  Google Scholar 

  • Reed JK (2006) Deep-water Oculina reefs of Florida: summary of the state of knowledge of the habitat, fauna, geology, and physical processes of the ecosystem. Port Canaveral, Florida South Atlantic Fishery Management Council Oculina Evaluation Team Workshop, p 27

    Google Scholar 

  • Reed JK, Farrington S (2010) Distribution of deep-water commercial fisheries species-golden crab, tilefish, royal red shrimp-in deep-water habitats off eastern Florida from submersible and ROV dives. South Atlantic Fishery Management Council and NOAA National Marine Fisheries Service Report

    Google Scholar 

  • Reed JK, Mikkelson PM (1987) The molluscan community associated with the scleractinian coral Oculina varicosa. Bull Mar Sci 40(1):99–131

    Google Scholar 

  • Reed JK, Wright A (2004) Final cruise report. Submersible and scuba collections on deep-water reefs off the east coast of Florida, including the Northern and Southern Straits of Florida and Florida Keys National Marine Sanctuary for biomedical and biodiversity research of the benthic communities with emphasis on the Porifera and Gorgonacea, May 20–June 2, 2004. Center of Excellence, HBOI and FAUs, p 54

    Google Scholar 

  • Reed JK, Gore RH, Scotto LE, Wilson KA (1982) Community composition, structure, aereal and trophic relationships of decapods associated with shallow- and deep-water Oculina varicosa coral reefs. Bull Mar Sci 32:761–786

    Google Scholar 

  • Reed JK, Pomponi SA, Weaver D, Paull CK, Wright AE (2005a) Deep-water sinkholes and bioherms of south Florida and the Pourtalès Terrace—habitat and fauna. Bull Mar Sci 77(2):267–296

    Google Scholar 

  • Reed JK, Shepard AN, Koenig CC, Scanlon KM, Gilmore RG Jr (2005b) Mapping, habitat characterization, and fish surveys of the deep-water Oculina coral reef Marine Protected Area: a review of historical and current research. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Erlangen earth conference series. Springer, Berlin, pp 443–465

    Chapter  Google Scholar 

  • Reed JK, Weaver DC, Pomponi SA (2006) Habitat and fauna of deep-water Lophelia pertusa coral reefs off the southeastern US: Blake Plateau, Straits of Florida, and Gulf of Mexico. Bull Mar Sci 78(2):343–375

    Google Scholar 

  • Reed JK, Koenig CC, Shepard AN (2007) Impacts of bottom trawling on a deep-water Oculina coral ecosystem off Florida. Bull Mar Sci 81:481–496

    Google Scholar 

  • Reed J, Harter S, Farrington S, David A (2013a) South Atlantic MPAs and deepwater coral HAPCs: Characterization of Benthic Habitat and Biota. HBOI Tech Rept No. 144

    Google Scholar 

  • Reed JK, Messing C, Walker BK, Brooke S, Correa TBS, Brouwer M, Udouj T, Farrington S (2013b) Habitat Characterization, Distribution, and Areal Extent of Deep-sea Coral Ecosystems off Florida, Southeastern U.S.A. Caribb J Sci 47(1):13–30. https://doi.org/10.18475/cjos.v47i1.a3

    Article  Google Scholar 

  • Reed JK, Harter S, Farrington S, David A (2014) Characterization and interrelationships of deepwater coral/sponge habitats and fish communities off Florida, USA. In: Bortone S (ed) Coral habitat and fish interrelationships. CRC, New York, pp 49–80

    Google Scholar 

  • Reed JK, Farrington S, Messing C, David A (2017) Distribution and habitat use of the golden crab Chaceon fenneri off eastern Florida based on in situ submersible and ROV observations and potential for impacts to deep water coral/sponge habitat. Gulf Caribb Res 28:1–14. https://doi.org/10.18785/gcr.2801.03

    Article  Google Scholar 

  • Roberts JM, Wheeler AJ, Freiwald A (2006) Reefs of the deep: The biology and geology of cold-water coral ecosystems. Science 312(5773):543–547. https://doi.org/10.1126/science.11(1986)1

    Article  CAS  PubMed  Google Scholar 

  • Roberts JM, Wheeler A, Freiwald A, Cairns S (2009) Cold-water corals: the biology and geology of deep-sea coral habitats. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Rogers AD (1999) The biology of Lophelia pertusa (Linnaeus 1758) and other deep-water reef-forming corals and impacts from human activities. Int Rev Hydrobiol 84(4):315–406

    Article  Google Scholar 

  • Ross S, Nizinski M (2007) State of deep coral ecosystems in the southeastern United States Region: Cape Hatteras to the Florida In: Lumsden SE, Hourigan TF, Bruckner AW, Dorr G (eds) The state of deep coral ecosystems of the United States. NOAA Tech Memo CRCP-3, Silver Spring, MD, pp 233–270

    Google Scholar 

  • Ross SW, Quattrini AM (2007) The fish fauna associated with deep coral banks off the southeastern United States. Deep Sea Res Pt I 54(6):975–1007. https://doi.org/10.1016/j.dsr.2007.03.010

    Article  Google Scholar 

  • Ross SW, Quattrini AM (2009) Deep-sea reef fish assemblage patterns on the Blake Plateau (Western North Atlantic Ocean). Mar Ecol 30(1):74–92

    Article  Google Scholar 

  • Ross SW, Brooke S, Quattrini AM, Rhode M, Watterson JC (2015) A deep-sea community, including Lophelia pertusa, at unusually shallow depths in the western North Atlantic Ocean off northeastern Florida. Mar Biol 162(3):635–648. https://doi.org/10.1007/s00227-015-2611-2

    Article  Google Scholar 

  • Rousset C, Beal LM (2014) Closing the transport budget of the Florida Straits. Geophys Res Lett 41(7):2460–2466. https://doi.org/10.1002/2014gl059498

    Article  Google Scholar 

  • Rowe GT, Menzies RJ (1969) Zonation of large benthic invertebrates in the deep-sea off the Carolinas. Deep-Sea Res Oceanogr Abstr 16(5):531–537

    Article  Google Scholar 

  • Sautter LR, Morrison C, Cantwell K, Sowers D, Lobecker E (2019) Windows to the deep 2018: exploration of the Southeast US Continental Margin. Oceanography 32(1, Suppl):82–87

    Google Scholar 

  • Sedberry GR (ed) (2001) Island in the stream: oceanography and fisheries of the Charleston Bump. Am Fish Soc Symp 25, Bethesda, MD

    Google Scholar 

  • Sedberry GR, Ulrich GF, Applegate A (1994) Development and status of the fishery for wreckfish (Polyprion americanus) in the southeastern United States. Proc Gulf Caribb Fish Inst 43:168–192

    Google Scholar 

  • Sedberry G, Andrus C, Barans C, Crowe S, Fiore C, Griffin S, Jutte PC, Sautter L, Schobernd C (2010) Mounds, depressions, scarps and caves: exploration of habitat and species diversity on the Charleston Bump and Blake Plateau. Final Project Report. Ocean Exploration, p 62

    Google Scholar 

  • Seim H, Edwards C (2019) Upper-slope jets and Gulf Stream filaments inshore of the Charleston Bump during winter 2012. J Phys Oceanogr 49:1423–1438. https://doi.org/10.1175/JPO-D-18-0205.1

    Article  Google Scholar 

  • Sheinbaum J, Candela J, Badan A, Ochoa J (2002) Flow structure and transport in the Yucatan Channel. Geophys Res Lett 29:1040. https://doi.org/10.1029/2001GL013990

    Article  Google Scholar 

  • Smith PJ, McVeagh SM, Mingoia T, France SC (2004) Mitochondrial DNA sequence variation in deep-sea bamboo coral (Keratoisidinae) species in the southwest and northwest Pacific Ocean. Mar Biol 144:253–261

    Article  CAS  Google Scholar 

  • Sowers DC (2020) Utilizing extended continental shelf (ECS) and ocean exploration mapping data for standardized marine ecological classification of the US Atlantic Margin (2020.28260193) Dissertation, University of New Hampshire. ProQuest Dissertations

    Google Scholar 

  • Squires DF (1964) Fossil coral thickets in Wairarapa, NZ. J Paleontol 38(5):904–915

    Google Scholar 

  • Stefanoudis PV, Gress E, Pitt JM, Smith SR, Kincaid T, Rivers M, Andradi-Brown DA, Rowlands G, Woodall LC, Rogers AD (2019) Depth-dependent structuring of reef fish assemblages from the shallows to the rariphotic zone. Front Mar Sci 6:307. https://doi.org/10.3389/fmars.2019.00307

    Article  Google Scholar 

  • Stetson TR, Squires DF, Pratt RM (1962) Coral banks occurring in deep water on the Blake Plateau. Am Mus Novit 2114:1–39

    Google Scholar 

  • Stiles ML, Harrould-Kolieb E, Faure P, Ylitalo-Ward H, Hirshfield MF (2007) Deep-sea trawl fisheries of the southeast US and Gulf of Mexico: rock shrimp, royal red shrimp, calico scallops. Oceana Rept, May 2007. https://www.coris.noaa.gov/activities/resourceCD/resources/trawl_report_bm.pdf. Accessed 1 Sept 2020

  • Summers AC, Nybakken J (2000) Brittle star distribution patterns and population densities on the continental slope off central California (Echinodermata: Ophiuroidea). Deep Sea Res Pt II 47(5–6):1107–1137. https://doi.org/10.1016/S0967-0645(99)00138-1

    Article  Google Scholar 

  • Szmant AM (1986) Reproductive ecology of Caribbean reef corals. Coral Reefs 5:43–54

    Article  Google Scholar 

  • Szuts ZB, Meinen CS (2017) Florida Current salinity and salinity transport: mean and decadal changes. Geophys Res Lett 44(20):10495–10503. https://doi.org/10.1002/2017gl074538

    Article  Google Scholar 

  • Taylor ML, Roterman CN (2017) Invertebrate population genetics across Earth’s largest habitat: the deep-sea floor. Mole Ecol 26:4872–4896

    Article  CAS  Google Scholar 

  • Taylor ML, Gwinnett C, Robinson LF, Woodall LC (2016) Plastic microfibre ingestion by deep-sea organisms. Sci Rep 6:33997. https://doi.org/10.1038/srep33997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teichert C (1958) Cold-and deep-water coral banks. AAPG Bull 42(5):1064–1082

    Google Scholar 

  • Todd RE (2017) High-frequency internal waves and thick bottom mixed layers observed by gliders in the Gulf Stream. Geophys Res Lett 44(12):6316–6325. https://doi.org/10.1002/2017gl072580

    Article  Google Scholar 

  • Todd RE (2020) Spray glider observations in support of PEACH [Data set]. Scripps Institution of Oceanography, Instrument Development Group. https://doi.org/10.21238/S8SPRAY0880

  • Todd RE (2021) Gulf Stream mean and eddy kinetic energy: three-dimensional estimates from underwater glider observations. Geophys Res Lett 48(6):e2020GL090281. https://doi.org/10.1029/2020GL090281

    Article  Google Scholar 

  • Todd RE, Owens B (2016) Gliders in the Gulf Stream [Data set]. Scripps Institution of Oceanography, Instrument Development Group. https://doi.org/10.21238/S8SPRAY2675

  • Todd RE, Owens WB, Rudnick DL (2016) Potential vorticity structure in the North Atlantic Western Boundary Current from underwater glider observations. J Phys Oceanogr 46(1):327–348. https://doi.org/10.1175/jpo-d-15-0112.1

    Article  Google Scholar 

  • Tsuchiya M (1989) Circulation of the Antarctic intermediate water in the North-Atlantic Ocean. J Mar Res 47(4):747–755. https://doi.org/10.1357/002224089785076136

    Article  CAS  Google Scholar 

  • Uchupi E (1967) The continental margin south of Cape Hatteras, North Carolina: shallow structure. Southeast Geol 8(7):155–177

    Google Scholar 

  • Uchupi E, Tagg R (1967) Microrelief of the continental margin south of Cape Lookout, North Carolina. Geol Soc Amer Bull 77:427–430

    Article  Google Scholar 

  • Van Haren H, Mienis F, Duineveld GCA, Lavaleye MSS (2014) High-resolution temperature observations of a trapped nonlinear diurnal tide influencing cold-water corals on the Logachev mounds. Prog Oceanogr 125:16–25. https://doi.org/10.1016/j.pocean.2014.04.021

    Article  Google Scholar 

  • Waller RG (2005) Deep-water Scleractinia (Cnidaria: Anthozoa) current knowledge of reproductive processes. In: Friewald A, Roberts JM (eds) Cold water corals and ecosystems. Springer, Berlin, pp 691–700

    Chapter  Google Scholar 

  • Waller RG, Tyler PA (2005) The reproductive biology of two deep-water, reef-building scleractinians from the NE Atlantic Ocean. Coral Reefs 24(3):514–522

    Article  Google Scholar 

  • Watling L, France SC, Pante E, Simpson A (2011) Biology of deep-water octocorals. Adv Mar Biol 60:41–122. https://doi.org/10.1016/B978-0-12-385529-9.00002-0

    Article  PubMed  Google Scholar 

  • Weaver DC, Sedberry GR (2001) Trophic subsidies at the Charleston Bump: food web structure of reef fishes on the continental slope of the southeastern United States. In: Sedberry GR (ed) Island in the stream: oceanography and fisheries of the Charleston Bump, Amer Fish Soc Symp 25, Bethesda, MD, pp 137–152

    Google Scholar 

  • Wedding LM, Friedlander AM, Kittinger JN, Watling L, Gaines SD, Bennett M, Hardy SM, Smith CR (2013) From principles to practice: a spatial approach to systematic conservation planning in the deep sea. Proc R Soc B 280:20131684. https://doi.org/10.1098/rspb.2013.1684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wenner E, Barans C (1990) In situ estimates of density of golden crab, Chaceon fenneri, from habitats on the continental slope, southeastern US. Bull Mar Sci 46(3):723–734

    Google Scholar 

  • Wenner E, Barans C (2001) Benthic habitats and associated fauna of the upper- and middle-continental slope near the Charleston Bump. In: Sedberry GR (ed) Island in the stream: oceanography and fisheries of the Charleston Bump, Amer Fish Soc Symp 25, Bethesda, MD, pp 161–176

    Google Scholar 

  • Wienberg C, Hebbeln D, Fink HG, Mienis F, Dorschel B, Vertino A, Correa ML, Freiwald A (2009) Scleractinian cold-water corals in the Gulf of Cadiz-First clues about their spatial and temporal distribution. Deep Sea Res Pt I 56:1873–1893

    Article  Google Scholar 

  • William T, Kano A, Ferdelman T, Henriet JP, Abe K, Andres MS, Bjerager M, Browning EL, Cragg BA, De Mol B (2006) Cold-water coral mounds revealed. Eos Trans Am Geophys Union 87(47):525–526

    Article  Google Scholar 

  • Williams B, Risk MJ, Ross SW, Sulak KJ (2007) Stable isotope data from deep-water antipatharians: 400-year records from the southeastern coast of the United States of America. Bull Mar Sci 81(3):437–447

    Google Scholar 

  • Wilson J (1979) Patch development of the deep-water coral Lophelia pertusa (L.) on Rockall Bank. J Mar Biol Assoc UK 59(1):165–177

    Article  Google Scholar 

  • Woodall LC, Sanchez-Vidal A, Canals M, Paterson GLJ, Coppock R, Sleight V, Calafat A, Rogers AD, Narayanaswamy BE, Thompson RC (2014) The deep sea is a major sink for microplastic debris. R Soc Open Sci 1:140317. https://doi.org/10.1098/rsos.140317

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang H, Lohmann G, Wei W, Dima M, Ionita M, Liu J (2016) Intensification and poleward shift of subtropical western boundary currents in a warming climate. J Geophys Res Oceans 121:4928–4945

    Article  Google Scholar 

  • Zarudzki EF, Uchupi E (1968) Organic reef alignment on the continental margin south of Cape Hatteras. Geol Soc Am Bull 79:1867–1870

    Article  Google Scholar 

  • Zeng X, He R (2016) Gulf Stream variability and a triggering mechanism of its large meander in the South Atlantic Bight. J Geophys Res Oceans 121(11):8021–8038. https://doi.org/10.1002/2016jc012077

    Article  Google Scholar 

Download references

Acknowledgments

S. Farrington, W. Sautter, and A. Reft are gratefully acknowledged for preparing Fig. 4.1, Appendix 3, and Fig. 4.10, respectively. J. Chaytor and R. Gasbarro produced the maps of Richardson Reef complex. Harbor Branch Oceanographic Institution, Florida Atlantic University, (HBOI-FAU), S. Ross, and NOAA Office of Ocean Exploration and Research provided images for Figs. 4.9 and 4.10. Bureau of Ocean Energy Management, Environmental Studies Program (DeepSearch, Contract Number M17PC00009), NOAA Cooperative Institute for Ocean Exploration, Research, and Technology at HBOI-FAU, the Smithsonian Institution and the US Geological Survey provided partial funding and support for data collection and salaries. Extensive surveys conducted in the region by NOAA Ship Okeanos Explorer provided data that led to recent discoveries. The South Atlantic Fishery Management Council is gratefully acknowledged for assuming the task of protecting these deep-water coral reefs. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea M. Quattrini .

Editor information

Editors and Affiliations

Appendices

Appendices

4.1.1 Appendix 1

3 depth profile graphs of North Carolina, South Carolina or Georgia, and Florida plots depth versus distance from shore. 1 plots the shelf, slope, rise, and abyssal plain. 2 and 3 plots the shelf, Florida with hatter as slope, Blake plateau, escarpment, and more. An inset map locates the study area.

Depth profile comparison of North Carolina, South Carolina/Georgia, and Florida continental margins and their distinctive features, shown at the same scale with vertical exaggeration of 16.67×. Inset map shows profile locations (map and profiles generated using GeoMapApp)

4.1.2 Appendix 2

An enlarged topographic map of the Southeastern U S, from North Carolina to Florida. It highlights the bathymetry depth in meters using different shades. The shade for the highest value is near the coast.

High-resolution (30 m) multibeam sonar bathymetry of the SEUS continental margin as of December 2019. Only depths between 200 and 1500 m are illustrated (overlain on the GEBCO bathymetry). Large areas of the southeastern BP remain unmapped at high resolution

4.1.3 Appendix 3

An enlarged topographic map of the Southeastern U S, from North Carolina to Florida. It locates the H B O I J S L and R O V dives, E x 1806, E x 1903, and E 1907, and highlights the oculina H A P C, deep coral H A P C, and E E Z.

A schematic of circulation. Black solid lines mark the typical location of the GS; dashed lines in the southwest corner denote an alternate path when the Loop Current is retracted. Quasi-stationary recirculations are marked with dashed ellipses, and arrows denote different inflows

4.1.4 Appendix 4

6 bathymetry contour maps. A. plots the glider's path and depth average currents. B to F plot depth versus potential temperature, salinity, Eastward velocity, Northward velocity, and dissolved oxygen. They plot the isopycnal lines.

Transect across the Gulf Stream over the BP collected by a Spray glider in August 2019. (a) Map of the glider’s path (blue) with measured depth average currents (red) and bathymetry contoured; contours are drawn every 100 m with the 500-m isobath black. (bf) Sections of (b) potential temperature, (c) salinity, (d) eastward velocity, (e) northward velocity, and (f) dissolved oxygen. White contours in (bf) are isopycnals with a contour interval of 0.5 kg m–3 and the 26.0 and 27.0 kg m–3 isopycnals bold, and tick marks on the upper axes indicate locations of individual glider profiles

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Contribution is not under copyright protection in the U.S., in whole or in part; foreign copyright protection may apply

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Quattrini, A.M. et al. (2023). Cold-Water Coral Reefs of the Southeastern United States. In: Cordes, E., Mienis, F. (eds) Cold-Water Coral Reefs of the World. Coral Reefs of the World, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-031-40897-7_4

Download citation

Publish with us

Policies and ethics