Skip to main content

Inherently Interpretable Deep Reinforcement Learning Through Online Mimicking

  • Conference paper
  • First Online:
Explainable and Transparent AI and Multi-Agent Systems (EXTRAAMAS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14127))

  • 275 Accesses

Abstract

Although deep reinforcement learning (DRL) methods have been successfully applied in challenging tasks, their application in real-world operational settings - where transparency and accountability play important roles in automation - is challenged by methods’ limited ability to provide explanations. Among the paradigms for explainability in DRL is the interpretable box design paradigm, where interpretable models substitute inner closed constituent models of the DRL method, thus making the DRL method “inherently” interpretable. In this paper we propose a generic paradigm where interpretable DRL models are trained following an online mimicking paradigm. We exemplify this paradigm through XDQN, an explainable variation of DQN that uses an interpretable model trained online with the deep Q-values model. XDQN is challenged in a complex, real-world operational multi-agent problem pertaining to the demand-capacity balancing problem of air traffic management (ATM), where human operators need to master complexity and understand the factors driving decision making. XDQN is shown to achieve high performance, similar to that of its non-interpretable DQN counterpart, while its abilities to provide global models’ interpretations and interpretations of local decisions are demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The implementation code will be made available in the final version of the manuscript.

References

  1. Ba, J., Caruana, R.: Do deep nets really need to be deep? In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., Weinberger, K. (eds.) Advances in Neural Information Processing Systems, vol. 27. Curran Associates, Inc. (2014). https://proceedings.neurips.cc/paper/2014/file/ea8fcd92d59581717e06eb187f10666d-Paper.pdf

  2. Bastani, O., Pu, Y., Solar-Lezama, A.: Verifiable reinforcement learning via policy extraction. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NIPS 2018, pp. 2499–2509. Curran Associates Inc., Red Hook, NY, USA (2018)

    Google Scholar 

  3. Belle, V., Papantonis, I.: Principles and practice of explainable machine learning. Front. Big Data 4, 39 (2021)

    Google Scholar 

  4. Boz, O.: Extracting decision trees from trained neural networks. In: KDD 2002, pp. 456–461. Association for Computing Machinery, New York, NY, USA (2002). https://doi.org/10.1145/775047.775113

  5. Boz, O.: Extracting decision trees from trained neural networks. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 456–461 (2002)

    Google Scholar 

  6. Che, Z., Purushotham, S., Khemani, R., Liu, Y.: Interpretable deep models for ICU outcome prediction. In: AMIA Annual Symposium Proceedings 2016, pp. 371–380, February 2017

    Google Scholar 

  7. Coppens, Y., et al.: Distilling deep reinforcement learning policies in soft decision trees. In: Proceedings of the IJCAI 2019 Workshop on Explainable Artificial Intelligence, pp. 1–6 (2019)

    Google Scholar 

  8. Dancey, D., Bandar, Z.A., McLean, D.: Logistic model tree extraction from artificial neural networks. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 37(4), 794–802 (2007)

    Google Scholar 

  9. Delgado-Panadero, Á., Hernández-Lorca, B., García-Ordás, M.T., Benítez-Andrades, J.A.: Implementing local-explainability in gradient boosting trees: feature contribution. Inf. Sci. 589, 199–212 (2022). https://doi.org/10.1016/j.ins.2021.12.111, https://www.sciencedirect.com/science/article/pii/S0020025521013323

  10. Frosst, N., Hinton, G.: Distilling a neural network into a soft decision tree. arXiv preprint arXiv:1711.09784 (2017)

  11. Gu, S., Holly, E., Lillicrap, T., Levine, S.: Deep reinforcement learning for robotic manipulation with asynchronous off-policy updates. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 3389–3396 (2017). https://doi.org/10.1109/ICRA.2017.7989385

  12. Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.: A survey of methods for explaining black box models. ACM Comput. Surv. (CSUR) 51(5), 1–42 (2018)

    Article  Google Scholar 

  13. Kravaris, T., et al.: Explaining deep reinforcement learning decisions in complex multiagent settings: towards enabling automation in air traffic flow management. Appl. Intell. (Dordrecht, Netherlands) 53, 4063–4098 (2022)

    Google Scholar 

  14. Kravaris, T., et al.: Resolving congestions in the air traffic management domain via multiagent reinforcement learning methods. arXiv:abs/1912.06860 (2019)

  15. Kravaris, T., Vouros, G.A., Spatharis, C., Blekas, K., Chalkiadakis, G., Garcia, J.M.C.: Learning policies for resolving demand-capacity imbalances during pre-tactical air traffic management. In: Berndt, J.O., Petta, P., Unland, R. (eds.) MATES 2017. LNCS (LNAI), vol. 10413, pp. 238–255. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64798-2_15

    Chapter  Google Scholar 

  16. Liu, G., Schulte, O., Zhu, W., Li, Q.: Toward interpretable deep reinforcement learning with linear model U-Trees. In: Berlingerio, M., Bonchi, F., Gärtner, T., Hurley, N., Ifrim, G. (eds.) ECML PKDD 2018, Part II. LNCS (LNAI), vol. 11052, pp. 414–429. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10928-8_25

    Chapter  Google Scholar 

  17. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  18. Madumal, P., Miller, T., Sonenberg, L., Vetere, F.: Explainable reinforcement learning through a causal lens. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 2493–2500 (2020)

    Google Scholar 

  19. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015). https://doi.org/10.1038/nature14236

    Article  Google Scholar 

  20. Murdoch, W.J., Singh, C., Kumbier, K., Abbasi-Asl, R., Yu, B.: Definitions, methods, and applications in interpretable machine learning. Proc. Nat. Acad. Sci. 116(44), 22071–22080 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should i trust you?”: Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2016, pp. 1135–1144. Association for Computing Machinery, New York, NY, USA (2016). https://doi.org/10.1145/2939672.2939778

  22. Rudin, C., Chen, C., Chen, Z., Huang, H., Semenova, L., Zhong, C.: Interpretable machine learning: fundamental principles and 10 grand challenges (2021). https://doi.org/10.48550/ARXIV.2103.11251, arXiv:2103.11251

  23. Rusu, A.A., et al.: Policy distillation (2015). https://doi.org/10.48550/ARXIV.1511.06295, arXiv:1511.06295

  24. Schaul, T., Quan, J., Antonoglou, I., Silver, D.: Prioritized experience replay (2015). https://doi.org/10.48550/ARXIV.1511.05952, arXiv:1511.05952

  25. Spatharis, C., Bastas, A., Kravaris, T., Blekas, K., Vouros, G., Cordero Garcia, J.: Hierarchical multiagent reinforcement learning schemes for air traffic management. Neural Comput. Appl. 35, 147–159 (2021). https://doi.org/10.1007/s00521-021-05748-7

  26. Spatharis, C., et al.: Multiagent reinforcement learning methods to resolve demand capacity balance problems. In: Proceedings of the 10th Hellenic Conference on Artificial Intelligence, SETN 2018. Association for Computing Machinery, New York, NY, USA (2018). https://doi.org/10.1145/3200947.3201010

  27. Tan, M.: Multi-agent reinforcement learning: Independent versus cooperative agents. In: ICML (1993)

    Google Scholar 

  28. Topin, N., Veloso, M.: Generation of policy-level explanations for reinforcement learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 2514–2521 (2019)

    Google Scholar 

  29. Vouros, G.A.: Explainable deep reinforcement learning: state of the art and challenges. ACM Comput. Surv. 55, 1–39 (2022). https://doi.org/10.1145/3527448,just Accepted

  30. Zemel, R.S., Pitassi, T.: A gradient-based boosting algorithm for regression problems. In: Proceedings of the 13th International Conference on Neural Information Processing Systems, NIPS 2000, pp. 675–681. MIT Press, Cambridge, MA, USA (2000)

    Google Scholar 

  31. Zhao, X., et al.: DEAR: deep reinforcement learning for online advertising impression in recommender systems. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35(1), pp. 750–758, May 2021. https://ojs.aaai.org/index.php/AAAI/article/view/16156

Download references

Acknowledgements

This work has been supported by the TAPAS H2020-SESAR2019-2 Project (GA number 892358) Towards an Automated and exPlainable ATM System and it is partially supported by the University of Piraeus Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Kontogiannis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kontogiannis, A., Vouros, G.A. (2023). Inherently Interpretable Deep Reinforcement Learning Through Online Mimicking. In: Calvaresi, D., et al. Explainable and Transparent AI and Multi-Agent Systems. EXTRAAMAS 2023. Lecture Notes in Computer Science(), vol 14127. Springer, Cham. https://doi.org/10.1007/978-3-031-40878-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40878-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40877-9

  • Online ISBN: 978-3-031-40878-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics