Skip to main content

Moving-Mesh Finite-Volume Methods for Hyperbolic Interface Dynamics

  • Conference paper
  • First Online:
Finite Volumes for Complex Applications X—Volume 1, Elliptic and Parabolic Problems (FVCA 2023)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 432))

Included in the following conference series:

  • 243 Accesses

Abstract

The numerical discretization of continuum-mechanical free boundary value problems for hyperbolic conservation laws becomes challenging when the dynamics of the interface depend sensitively on smaller-scale effects. A proper tracking of the interface and an efficient solution of the conservation laws in the bulk domains can be realized by a heterogeneous multi-scale ansatz combined with recently introduced moving-mesh concepts for finite-volume methods. To illustrate the approach we focus on two applications: the tracking of phase boundaries in compressible liquid-vapour flow and dimensionally mixed models for two-phase flow in fractured porous media. In the first case phase transition effects lead to non-standard interface dynamics. In the latter case the coupling conditions for the bulk domains involve the solution of evolution equations in the fractures which are represented as hypersurfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmed, E., Jaffré, J., Roberts, J.E.: A reduced fracture model for two-phase flow with different rock types. Math. Comput. Simul. 137, 49–70 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alkämper, M., Magiera, J., Rohde, C.: An interface preserving moving mesh in multiple space dimensions (2021). https://arxiv.org/abs/2112.11956

  3. Allen, M., Tildesley, D.: Computer Simulation of Liquids, 2nd edn. Oxford University Press Inc, Oxford (2017)

    Book  MATH  Google Scholar 

  4. Barth, T., Herbin, R., Ohlberger, M.: Finite volume methods: foundation and analysis. In: Stein, E., de Borst, R., Hughes, T. (eds.), Encyclopedia of Computational Mechanics, chapter 5, pp. 1–60. Wiley (2018)

    Google Scholar 

  5. Burbulla, S., Dedner, A., Hörl, M., Rohde, C.: Dune-mmesh: The DUNE grid module for moving interfaces. J. Open Source Softw. 7(74), 3959 (2022)

    Article  Google Scholar 

  6. Burbulla, S., Formaggia, L., Rohde, C., Scotti, A.: Modeling fracture propagation in poro-elastic media combining phase-field and discrete fracture models. Comput. Methods Appl. Mech. Eng. 403 (2023)

    Google Scholar 

  7. Burbulla, S., Rohde, C.: A finite-volume moving-mesh method for two-phase flow in fracturing porous media. J. Comput. Phys. 458, paper no. 111031 (2022)

    Google Scholar 

  8. Chalons, C., Engel, P., Rohde, C.: A conservative and convergent scheme for undercompressive shock waves. SIAM J. Numer. Anal. 52(1), 554–579 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chalons, C., Rohde, C., Wiebe, M.: A finite volume method for undercompressive shock waves in two space dimensions. ESAIM Math. Model. Numer. Anal. 51(5), 1987–2015 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dafermos, C.: Hyperbolic Conservation Laws in Continuum Physics, 3rd edn. Springer, Cham (2010)

    Book  MATH  Google Scholar 

  11. Dai, M., Schmidt, D.P.: Adaptive tetrahedral meshing in free-surface flow. J. Comput. Phys. 208(1), 228–252 (2005)

    Article  MATH  Google Scholar 

  12. Falcovitz, J., Alfandary, G., Hanoch, G.: A two-dimensional conservation laws scheme for compressible flows with moving boundaries. J. Comput. Phys. 138(1), 83–102 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Feireisl, E., Lukáčová-Medvid’ová, M., Mizerová, H., She, B.: Numerical Analysis of Compressible Fluid Flows. Springer, Cham (2021)

    Book  MATH  Google Scholar 

  14. Fumagalli, A., Scotti, A.: A numerical method for two-phase flow in fractured porous media with non-matching grids. Adv. Water Resour. 62, 454–464 (2013)

    Article  MATH  Google Scholar 

  15. Gross, J., Sadowski, G.: Perturbed-Chain SAFT: An equation of state based on a perturbation theory for chain molecules. Ind. Eng. Chem. Res. 40(4), 1244–1260 (2001)

    Article  Google Scholar 

  16. Harten, A., Hyman, J.M.: Self-adjusting grid methods for one-dimensional hyperbolic conservation laws. J. Comput. Phys. 50(2), 235–269 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  17. Huang, W., Russell, R.D.: Adaptive Moving Mesh Methods. Springer, New York (2011)

    Book  MATH  Google Scholar 

  18. List, F., Kumar, K., Pop, I.S., Radu, F.A.: Rigorous upscaling of unsaturated flow in fractured porous media. SIAM J. Math. Anal. 52(1), 239–276 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  19. Magiera, J., Rohde, C.: A molecular-continuum multiscale model for inviscid liquid-vapor flow with sharp interfaces. J. Comput. Phys. 469, paper no. 111551 (2022)

    Google Scholar 

  20. Martin, V., Jaffré, J., Roberts, J.E.: Modeling fractures and barriers as interfaces for flow in porous media. SIAM J. Sci. Comput. 26(5), 1667–1691 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Perot, B., Nallapati, R.: A moving unstructured staggered mesh method for the simulation of incompressible free-surface flows. J. Comput. Phys. 184(1), 192–214 (2003)

    Article  MATH  Google Scholar 

  22. Quan, S., Schmidt, D.P.: A moving mesh interface tracking method for 3d incompressible two-phase flows. J. Comput. Phys. 221(2), 761–780 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rohde, C.: Fully resolved compressible two-phase flow: modelling, analytical and numerical issues. In: Bulíček, M., Feireisl, E., Pokorný, M. (eds.), New Trends and Results in Mathematical Description of Fluid Flows, Nečas Center Series, chapter 4, pp. 115–181. Birkhäuser (2018)

    Google Scholar 

  24. Tang, H., Tang, T.: Adaptive mesh methods for one- and two-dimensional hyperbolic conservation laws. SIAM J. Numer. Anal. 41, 487–515 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Tukovic, Z., Jasak, H.: Simulation of free-rising bubble with soluble surfactant using moving mesh finite volume/area method. In: Proceedings of 6th International Conference on CFD in Oil and Gas, Metallurgical and Process Industries (2008)

    Google Scholar 

Download references

Acknowledgements

Funded by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy - EXC 2075 - 390740016. We acknowledge the support by the Stuttgart Center for Simulation Science (SimTech).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Rohde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rohde, C. (2023). Moving-Mesh Finite-Volume Methods for Hyperbolic Interface Dynamics. In: Franck, E., Fuhrmann, J., Michel-Dansac, V., Navoret, L. (eds) Finite Volumes for Complex Applications X—Volume 1, Elliptic and Parabolic Problems. FVCA 2023. Springer Proceedings in Mathematics & Statistics, vol 432. Springer, Cham. https://doi.org/10.1007/978-3-031-40864-9_7

Download citation

Publish with us

Policies and ethics