Skip to main content

High-Temperature W/ZrC Composite Coatings

  • Chapter
  • First Online:
Ceramic Coatings for High-Temperature Environments

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 373 Accesses

Abstract

Owing to their outstanding strength, resistance to thermal shock and ablation, high thermal stability, and good thermal expansion, composites of tungsten with zirconium carbide (W/ZrC) have attracted great attention for high-temperature applications. Various techniques can be used for the production of W/ZrC composites, including hot-pressing, spark plasma sintering, in-situ reaction sintering, and displacive compensation of porosity. Both hot-pressing and spark plasma sintering are typically used for preparing small-sized samples with simple geometry. Both in-situ reactive sintering and reactive infiltration methods are well-suited to produce refractory metal/ carbide composites. The reactive infiltration method benefits from a thorough infiltration step because of the good wettability of WC by low-melting metallic liquid of Zr2Cu in a preform to produce a near net-shaped W/ZrC composite. The reaction of zirconium carbide with oxygen can enhance oxidation resistance through the formation of ZrO2 layer which can be melted at a higher temperature (2677 ℃), covering the surface to avoid further oxidation of substrates. Several methods have been reported to deposit the composite on complex-shaped substrates. The results showed good adhesion between coating and graphite substrates as well as a considerable increase in mechanical properties resulting from the formation of solid solution in composites. In this chapter, an attempt has been made to review the preparation of WC preforms which are mainly based on the polymerization of low-toxic methacrylamide and gelation of non-toxic sodium alginate to prepare porous preforms with complex geometries and summarize the preparation methods of W/ZrC composites using reactive sintering and infiltration methods, focusing on microstructures, mechanical properties, and progress in coating applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

APS:

Ammonium persulfate

BSE:

Backscattered electron

CVD:

Chemical vapor deposition

DCP:

Displacive compensation of porosity

HP:

Hot pressing

MAM:

Methacrylamide

MBAM:

N,N′-Methylene bisacrylamide

ORN:

Oak Ridge National Laboratory

RMs:

Refractory metals

SAD:

Selected area diffraction

SEM:

Scanning electron microscopy

SPS:

Spark Plasma Sintering

TEM:

Trasmision electron microscopy

TEMED:

N,N,N,N′-Tetramethylethylenediamine

TIG:

Tungsten inert gas

W:

Tungsten

WC:

Tungsten carbide

ZrC:

Zirconium carbide

References

  1. Dickerson, M.B., Snyder, R.L., Sandhage, K.H.: Dense, near net-shaped, carbide/refractory metal composites at modest temperatures by the displacive compensation of porosity (DCP) method. J. Am. Ceram. Soc. 85, 730–732 (2002). https://doi.org/10.1111/J.1151-2916.2002.TB00164.X

    Article  CAS  Google Scholar 

  2. Zhao, Y.W., Wang, Y.J., Chen, L., Zhou, Y., Song, G.M., Li, J.P.: Microstructure and mechanical properties of ZrCW matrix composite prepared by reactive infiltration at 1300 ℃. Int. J. Refract. Metals Hard Mater. 37, 40–44 (2013). https://doi.org/10.1016/J.IJRMHM.2012.10.014

    Article  CAS  Google Scholar 

  3. Song, G.M., Wang, Y.J., Zhou, Y.: Elevated temperature ablation resistance and thermophysical properties of tungsten matrix composites reinforced with ZrC particles. J. Mater. Sci. 36, 4625–4631 (2001). https://doi.org/10.1023/A:1017989913219/METRICS

    Article  CAS  Google Scholar 

  4. Roosta, M., Baharvandi, H.: The comparison of W/Cu and W/ZrC composites fabricated through hot-press. Int. J. Refract. Metals Hard Mater. 28, 587–592 (2010). https://doi.org/10.1016/J.IJRMHM.2010.04.006

    Article  CAS  Google Scholar 

  5. Zhang, S.C., Hilmas, G.E., Fahrenholtz, W.G.: Zirconium carbide-tungsten cermets prepared by in situ reaction sintering. J. Am. Ceram. Soc. 90, 2296–2296 (2007). https://doi.org/10.1111/J.1551-2916.2007.01883.X

    Article  CAS  Google Scholar 

  6. Najafzadeh Khoee, A.A., Habibolahzadeh, A., Qods, F., Baharvandi, H.: Microstructure and properties of DCP-derived W-ZrC composite using nontoxic sodium alginate to fabricate WC preform. J. Mater. Eng. Perform. 24, 1641–1648 (2015). https://doi.org/10.1007/s11665-015-1427-z

  7. Mudanyi, R.K., Cramer, C.L., Elliott, A.M., Kumar, D.: Effect of W and C addition on the microstructure and phase composition of W-ZrC composites prepared by using Zr2Cu alloy and variant reactant compositions. Open Ceramics. 12 (2022). https://doi.org/10.1016/J.OCERAM.2022.100305

  8. Dickerson, M.B., Wurm, P.J., Schorr, J.R., Huffman, W.P., Wapner, P.G., Sandhage, K.H.: Near net-shape, ultra-high melting, recession-resistant ZrC/W-based rocket nozzle liners via the displacive compensation of porosity (DCP) method. J. Mater. Sci. 39, 6005–6015 (2004). https://doi.org/10.1023/B:JMSC.0000041697.67626.46/METRICS

    Article  CAS  Google Scholar 

  9. Zhao, Y., Wang, Y., Zhou, Y., Shen, P.: Reactive wetting and infiltration of polycrystalline WC by molten Zr2Cu alloy. Scr. Mater. 64, 229–232 (2011). https://doi.org/10.1016/J.SCRIPTAMAT.2010.10.018

    Article  CAS  Google Scholar 

  10. Omatete, O.O., Janney, M.A., Nunn, S.D.: Gelcasting: from laboratory development toward industrial production. J. Eur. Ceram. Soc. 17, 407–413 (1997). https://doi.org/10.1016/S0955-2219(96)00147-1

    Article  Google Scholar 

  11. Najafzadeh Khoee, A.A., Habibolahzadeh, A., Qods, F., Baharvandi, H.: Fabrication of tungsten carbide foam through gel-casting process using nontoxic sodium alginate. Int. J. Refract. Metals Hard Mater. 43, 115–120 (2014). https://doi.org/10.1016/j.ijrmhm.2013.11.011

  12. Mouazer, R., Thijs, I., Mullens, S., Luyten, J.: SiC foams produced by gelcasting: synthesis and characterization. Adv. Eng. Mater. 6, 340–343 (2004). https://doi.org/10.1002/ADEM.200400009

    Article  CAS  Google Scholar 

  13. Jin, Y., Zhang, B., Ye, F., Zhang, H., Zhong, Z., Liu, Q., Zhang, Z.: Development of ethylene glycol-based gelcasting for the preparation of highly porous SiC ceramics. Ceram. Int. 46, 7896–7902 (2020). https://doi.org/10.1016/J.CERAMINT.2019.12.009

    Article  CAS  Google Scholar 

  14. Zhang, T., Zhang, Z., Zhang, J., Jiang, D., Lin, Q.: Preparation of SiC ceramics by aqueous gelcasting and pressureless sintering. Mater. Sci. Eng. A 443, 257–261 (2007). https://doi.org/10.1016/J.MSEA.2006.08.047

    Article  Google Scholar 

  15. Xie, R., Zhang, D., Zhang, X., Zhou, K., Button, T.W.: Gelcasting of alumina ceramics with improved green strength. Ceram. Int. 38, 6923–6926 (2012). https://doi.org/10.1016/J.CERAMINT.2012.05.027

    Article  CAS  Google Scholar 

  16. Prabhakaran, K., Pavithran, C.: Gelcasting of alumina using urea-formaldehyde II. Gelation Ceram. Form., Ceram Int. 26, 67–71 (2000). https://doi.org/10.1016/S0272-8842(99)00020-6

    Article  CAS  Google Scholar 

  17. Studart, A.R., Gonzenbach, U.T., Tervoort, E., Gauckler, L.J.: Processing routes to macroporous ceramics: a review. J. Am. Ceram. Soc. 89, 1771–1789 (2006). https://doi.org/10.1111/J.1551-2916.2006.01044.X

    Article  CAS  Google Scholar 

  18. Askari, S.R., Khakzadi, M., Shahpasandi, A., Najafzadehkhoee, A.: Fabrication of W-ZrC nanocomposite through reaction sintering using relatively low-toxic methacrylamide-based system. Compos. Commun. 13, 156–161 (2019). https://doi.org/10.1016/j.coco.2019.04.009

    Article  Google Scholar 

  19. Finhana, I.C., Machado, V.V.S., Santos, T., Borges, O.H., Salvini, V.R., Pandolfelli, V.C.: Direct foaming of macroporous ceramics containing colloidal alumina. Ceram. Int. 47, 15237–15244 (2021). https://doi.org/10.1016/J.CERAMINT.2021.02.086

    Article  CAS  Google Scholar 

  20. Deng, X., Wang, J., Huang, Z., Zhao, W., Li, F., Zhang, H.: Research progress in preparation of porous ceramics. InterCeram: Int. Ceram. Rev. 64, 100–103 (2015). https://doi.org/10.1007/BF03401108/METRICS

  21. Montanaro, L., Coppola, B., Palmero, P., Tulliani, J.M.: A review on aqueous gelcasting: a versatile and low-toxic technique to shape ceramics. Ceram. Int. 45, 9653–9673 (2019). https://doi.org/10.1016/J.CERAMINT.2018.12.079

    Article  CAS  Google Scholar 

  22. Eom, J.H., Kim, Y.W., Raju, S.: Processing and properties of macroporous silicon carbide ceramics: a review. J. Asian Ceram. Soc. 1, 220–242 (2013). https://doi.org/10.1016/J.JASCER.2013.07.003

    Article  Google Scholar 

  23. Binner, J.G.P.: Production and properties of low density engineering ceramic foams. Br. Ceram. Trans. 96, 247–249 (1997)

    CAS  Google Scholar 

  24. Yaghobizadeh, O., Baharvandi, H., Alizadeh, A.: Investigation of effect of acrylate gel maker parameters on properties of WC preforms for the production of W-ZrC composite. Int. J. Refract. Metals Hard Mater. 45, 130–136 (2014). https://doi.org/10.1016/J.IJRMHM.2014.04.007

    Article  CAS  Google Scholar 

  25. Wang, X., Xie, Z.P., Huang, Y., Cheng, Y.B.: Gelcasting of silicon carbide based on gelation of sodium alginate. Ceram. Int. 28, 865–871 (2002). https://doi.org/10.1016/S0272-8842(02)00066-4

    Article  CAS  Google Scholar 

  26. Akhondi, H., Taheri-Nassaj, E., Sarpoolaky, H., Taavoni-Gilan, A.: Gelcasting of alumina nanopowders based on gelation of sodium alginate. Ceram. Int. 35, 1033–1037 (2009). https://doi.org/10.1016/J.CERAMINT.2008.04.023

    Article  CAS  Google Scholar 

  27. Yang, J., Yu, J., Huang, Y.: Recent developments in gelcasting of ceramics. J. Eur. Ceram. Soc. 31, 2569–2591 (2011). https://doi.org/10.1016/J.JEURCERAMSOC.2010.12.035

    Article  CAS  Google Scholar 

  28. Najafzadeh Khoee, A.A., Habibolahzadeh, A., Qods, F., Baharvandi, H.: Study on rheological behavior of WC slurry in gel-casting process and reactive infiltration of produced foam by molten Zr2Cu alloy. Int. J. Refract Metals Hard Mater. 46, 30–34 (2014). https://doi.org/10.1016/j.ijrmhm.2014.05.006

  29. Schilling, C.H., Li, C., Tomasik, P., Kim, J.C.: The rheology of alumina suspensions: influence of polysaccharides. J. Eur. Ceram. Soc. 22, 923–931 (2002). https://doi.org/10.1016/S0955-2219(01)00394-6

    Article  CAS  Google Scholar 

  30. Vitali, S., Giorgini, L.: Overview of the rheological behaviour of ceramic slurries, (n.d.). https://doi.org/10.5937/fmet1901042V

  31. Yu, Z., Huang, Y., Wang, C.A., Ouyang, S.: A novel gel tape casting process based on gelation of sodium alginate. Ceram. Int. 30, 503–507 (2004). https://doi.org/10.1016/J.CERAMINT.2003.08.003

    Article  CAS  Google Scholar 

  32. Trunec, M., Stastny, P., Kastyl, J.: Defect-free drying of large fine-particle zirconia compacts prepared by gelcasting method. J. Eur. Ceram. Soc. 42, 7180–7186 (2022). https://doi.org/10.1016/J.JEURCERAMSOC.2022.08.011

    Article  CAS  Google Scholar 

  33. Li, X., Jiang, D., Zhang, J., Lin, Q., Chen, Z., Huang, Z.: The dispersion of boron carbide powder in aqueous media. J. Eur. Ceram. Soc. 33, 1655–1663 (2013). https://doi.org/10.1016/J.JEURCERAMSOC.2013.02.001

    Article  CAS  Google Scholar 

  34. Dong, B., Wang, L., Min, Z., Wang, Q., Yin, C., Jia, T., Wang, Y., Zheng, X., Wang, F., Abadikhah, H., Xu, X., Zhang, Y., Wang, G.: Fabrication of novel porous Al2O3 substrates by combining emulsion templating and gel-tape-casting methods. Ceram. Int. 48, 7320–7324 (2022). https://doi.org/10.1016/J.CERAMINT.2021.11.205

    Article  CAS  Google Scholar 

  35. Kim, J.H., Zhe, G., Lim, J., Park, C., Kang, S.: Thermodynamic stability of in situ W-ZrC and W-Zr(CN) composites. J. Alloys Compd. 647, 1048–1053 (2015). https://doi.org/10.1016/J.JALLCOM.2015.06.117

    Article  CAS  Google Scholar 

  36. Oishi, T., Hirata, A., Ishida, H., Ono, K.: Outokumpu HSC chemistry for windows, chemical reaction and equilibrium software with extensive ther-mochemical. Database 64, 662–668 (1994). https://doi.org/10.2320/JINSTMET1952.64.8_662

    Article  Google Scholar 

  37. Najafzadehkhoee, A., Habibolahzadeh, A., Qods, F., Vakhshouri, M., Polkowski, W., Hvizdos, P., Galusek, D., Sk, A.N.: Effect of ZrC nanopowder addition in WC preforms on microstructure and properties of W-ZrC composites prepared by the displacive compensation of porosity (DCP) method. J. Aust. Ceram. Soc. 57, 515–523 (2021). https://doi.org/10.1007/s41779-020-00538-1/Published

    Article  CAS  Google Scholar 

  38. Najafzadehkhoee, A., Habibolahzadeh, A., Qods, F., Hvizdos, P.: A Taguchi approach to the influence of infiltration parameters on microstructure and properties of W-ZrC composites prepared by the displacive compensation of porosity (DCP) method. Compos. Commun. 20 (2020). https://doi.org/10.1016/j.coco.2020.05.002

  39. Adabi, M., Amadeh, A.: Effect of infiltration parameters on composition of W-ZrC composites produced by displacive compensation of porosity (DCP) method. Int. J. Refract. Metals Hard Mater. 29, 31–37 (2011). https://doi.org/10.1016/J.IJRMHM.2010.06.009

    Article  CAS  Google Scholar 

  40. Golestani Fard, M.A., Baharvandi, H.: Development of W-ZrC composite coating on graphite by a TIG-aided surface cladding process. Ceram. Int. 47, 27958–27971 (2021). https://doi.org/10.1016/j.ceramint.2021.06.227

  41. Windhorst, T., Blount, G.: Carbon–carbon composites: a summary of recent developments and applications. Mater. Des. 18, 11–15 (1997). https://doi.org/10.1016/S0261-3069(97)00024-1

    Article  CAS  Google Scholar 

  42. Lee, Y.J., Joo, H.J.: Ablation characteristics of carbon fiber reinforced carbon (CFRC) composites in the presence of silicon carbide (SiC) coating. Surf. Coat. Technol. 180–181, 286–289 (2004). https://doi.org/10.1016/j.surfcoat.2003.10.071

    Article  CAS  Google Scholar 

  43. Li, Y., Liu, Y., Guo, C., Chen, Y., Liang, J., Zhang, J., Zhang, J., Guo, L.: Ablation resistance of ZrC-based composite coating with multi-layer structure for carbon/carbon composites above 2200 ℃. Corros. Sci.. Sci. 207, 110600 (2022). https://doi.org/10.1016/J.CORSCI.2022.110600

    Article  CAS  Google Scholar 

  44. Yang, X., Huang, Q., Su, Z., Chang, X., Chai, L., Liu, C., Xue, L., Huang, D.: Resistance to oxidation and ablation of SiC coating on graphite prepared by chemical vapor reaction. Corros. Sci.. Sci. 75, 16–27 (2013). https://doi.org/10.1016/J.CORSCI.2013.05.009

    Article  CAS  Google Scholar 

  45. Wen, G., Sui, S.H., Song, L., Wang, X.Y., Xia, L.: Formation of ZrC ablation protective coatings on carbon material by tungsten inert gas cladding technique. Corros. Sci.. Sci. 52, 3018–3022 (2010). https://doi.org/10.1016/J.CORSCI.2010.05.015

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research work has been supported by the Research Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic, by the project: Advancement and support of R&D for “Centre for diagnostics and quality testing of materials” in the domains of the RIS3 SK specialization, Acronym: CEDITEK II., ITMS2014+ code 313011W442.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aliasghar Najafzadehkhoee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Najafzadehkhoee, A., Vakhshouri, M., Hvizdoš, P., Galusek, D. (2024). High-Temperature W/ZrC Composite Coatings. In: Pakseresht, A., Amirtharaj Mosas, K.K. (eds) Ceramic Coatings for High-Temperature Environments. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-40809-0_15

Download citation

Publish with us

Policies and ethics