Skip to main content

Hybrid Intelligent Control for Maximum Power Point Tracking of a Floating Wind Turbine

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2023)

Abstract

Floating Offshore Wind Turbines (FOWTs) are surrounded by an environment with random phenomena (wind and waves) that disturb the ideal operation of these devices. In addition, its non-linear dynamics make the control of power generation more complex. In order to face these disturbances, achieving the maximum energy production and reducing as much as possible the vibrations of the turbine, in this work a control action is designed and applied in the Maximum Power Point Tracking (MPPT) operation region of a 5MW FOWT. A hybrid control architecture composed of intelligent and conventional regulators is defined. The intelligent controller is an unsupervised radial basis function neural network (RBNN), which is responsible for adjusting the electromagnetic torque to achieve optimal speed and power output. The conventional controller that complements the NN is a PID that seeks to reduce the movements of the tower. This control approach is incorporated into the Direct Speed Control (DSC) framework which determines the reference speed to follow. Control parameters have been optimized using genetic algorithms. This hybrid methodology is validated against the OpenFAST software torque control strategy, providing greater efficiency in terms of better power generation and vibration reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pfeifer, A., Krajačić, G., Ljubas, D., Duić, N.: Increasing the integration of solar photovoltaics in energy mix on the road to low emissions energy system – economic and environmental implications. Renew. Energy 143, 1310–1317 (2019). https://doi.org/10.1016/j.renene.2019.05.080

    Article  Google Scholar 

  2. Swibki, T., Salem, I.B., Amraoui, L.E.: Modeling and control of direct-drive PMSG-based offshore wind turbine under rigorous wind conditions. In: 2020 6th IEEE International Energy Conference (ENERGYCon) (2020).https://doi.org/10.1109/energycon48941.2020.9236563

  3. Huynh, P.T., Tungare, S., Banerjee, A.: Maximum power point tracking for wind turbine using integrated generator-rectifier systems. IEEE Trans. Power Electron. 36, 504–512 (2020). https://doi.org/10.1109/tpel.2020.3002254

    Article  Google Scholar 

  4. Sierra-García, J.E., Santos, M.: Redes neuronales y aprendizaje por refuerzo en el control de turbinas eólicas. Revista Iberoamericana de Automática e Informática industrial 18(4), 327–335 (2021)

    Article  Google Scholar 

  5. Zhang, X., Zhang, Z., Jia, J., Zheng, L.: A Maximum Power Point Tracking Control Method Based on Rotor Speed PDF Shape for Wind Turbines. Appl. Sci. 12(18), 9108 (2022). https://doi.org/10.3390/app12189108

    Article  Google Scholar 

  6. Abdullah, M.A., Yatim, A.H.M., Tan, C.W., Saidur, R.: A review of maximum power point tracking algorithms for wind energy systems. Renew. Sustain. Energy Rev. 16(5), 3220–3227 (2012). https://doi.org/10.1016/j.rser.2012.02.016

    Article  Google Scholar 

  7. Thongam, J.S., Ouhrouche, M.: MPPT control methods in wind energy conversion systems. In: Carriveau, R, (ed.) Advanced Topics in Wind Power, pp. 339–360. InTech (2011)

    Google Scholar 

  8. Pan, L., Zhu, Z., Xiong, Y., Shao, J.: Integral sliding mode control for maximum power point tracking in DFIG based floating offshore wind turbine and power to gas. Processes 9(6), 1016 (2021). https://doi.org/10.3390/pr9061016

    Article  Google Scholar 

  9. Chojaa, H., Derouich, A., Chehaidia, S.E., Zamzoum, O., Taoussi, M., Elouatouat, H.: Integral sliding mode control for DFIG based WECS with MPPT based on artificial neural network under a real wind profile. Energy Rep. 7, 4809–4824 (2021). https://doi.org/10.1016/j.egyr.2021.07.066

    Article  Google Scholar 

  10. Xiong, L., Li, P., Wang, J.: High-order sliding mode control of DFIG under unbalanced grid voltage conditions. Int. J. Electr. Power Energy Syst. 117, 105608 (2020). https://doi.org/10.1016/j.ijepes.2019.105608

    Article  Google Scholar 

  11. Pande, J., Nasikkar, P., Kotecha, K., Varadarajan, V.: A review of maximum power point tracking algorithms for wind energy conversion systems. J. Mar. Sci. Eng. 9(11), 1187 (2021)

    Article  Google Scholar 

  12. Muñoz-Palomeque, E., Sierra-García, J.E., Santos, M.: Wind turbine maximum power point tracking control based on unsupervised neural networks. J. Comput. Design Eng. 10(1), 108–121 (2023). https://doi.org/10.1093/jcde/qwac132

    Article  Google Scholar 

  13. Sitharthan, R., Karthikeyan, M., Sundar, D.S., Rajasekaran, S.: Adaptive hybrid intelligent MPPT controller to approximate effectual wind speed and optimal rotor speed of variable speed wind turbine. ISA Trans. 96, 479–489 (2019). https://doi.org/10.1016/j.isatra.2019.05.029

    Article  Google Scholar 

  14. Kumar, D., Chatterjee, K.: A review of conventional and advanced MPPT algorithms for wind energy systems. Renew. Sustain. Energy Rev. 55, 957–970 (2016). https://doi.org/10.1016/j.rser.2015.11.013

    Article  Google Scholar 

  15. Noureddine, S., Morsli, S., Tayeb, A.: Optimized fuzzy fractional PI-based MPPT controllers for a variable-speed wind turbine. Wind Eng. 46(6), 1721–1734 (2022)

    Article  Google Scholar 

  16. Zhao, L., Xue, L., Li, Z., Wang, J., Yang, Z., Xue, Y.: Progress on offshore wind farm dynamic wake management for energy. J. Mar. Sci. Eng. 10(10), 1395 (2022)

    Article  Google Scholar 

  17. Raouf, A., Tawfiq, K.B., Eldin, E.T., Youssef, H., El-Kholy, E.E.: Wind energy conversion systems based on a synchronous generator: comparative review of control methods and performance. Energies 16(5), 2147 (2023)

    Article  Google Scholar 

  18. Karthik, R., Harsh, H., Pavan Kumar, Y.V., John Pradeep, D., Pradeep Reddy, C., Kannan, R.: Modelling of neural network-based MPPT controller for wind turbine energy system. In: Suhag, S., Mahanta, C., Mishra, S. (eds.) Control and Measurement Applications for Smart Grid. Lecture Notes in Electrical Engineering, vol. 822, pp. 429–439. Springer, Singapore (2022)

    Chapter  Google Scholar 

  19. Zhou, B., Zhang, Z., Li, G., Yang, D., Santos, M.: Review of key technologies for offshore floating wind power generation. Energies 16(2), 710 (2023)

    Article  Google Scholar 

  20. Álvarez, A.F.O., Santos, M.: Mechanical stability analysis of a DFIG floating offshore wind turbine using an oriented-control model. IEEE Lat. Am. Trans. 21(1), 91–97 (2023)

    Article  Google Scholar 

  21. Muñoz, E., Ayala, E., Pozo, N., Simani, S.: Fuzzy PID control system analysis for a wind turbine maximum power point tracking using FAST and Matlab simulink. In: Iano, Y., Saotome, O., Kemper, G., Mendes de Seixas, A.C., Gomes de Oliveira, G. (eds.) BTSym 2020. SIST, vol. 233, pp. 905–917. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75680-2_100

    Chapter  Google Scholar 

Download references

Acknowledgments

This work has been partially supported by the Spanish Ministry of Science and Innovation under project MCI/AEI/FEDER number PID2021-123543OB-C21.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Muñoz-Palomeque .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Muñoz-Palomeque, E., Sierra-García, J.E., Santos, M. (2023). Hybrid Intelligent Control for Maximum Power Point Tracking of a Floating Wind Turbine. In: García Bringas, P., et al. Hybrid Artificial Intelligent Systems. HAIS 2023. Lecture Notes in Computer Science(), vol 14001. Springer, Cham. https://doi.org/10.1007/978-3-031-40725-3_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40725-3_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40724-6

  • Online ISBN: 978-3-031-40725-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics