Skip to main content

A Conceptual Model for Analysis of Plant Diseases Through EfficientNet: Towards Precision Farming

  • Chapter
  • First Online:
Innovations in Machine and Deep Learning

Part of the book series: Studies in Big Data ((SBD,volume 134))

  • 256 Accesses

Abstract

Machine Learning (ML) techniques in agriculture yield high performance in precision farming. Smart agriculture opens a door of opportunities in disease detection, classification, and crop management. In this work, authors analyze how real-time Artificial Intelligence (AI) can classify plant disease from leaf images. Leaf images can be collected through the Internet of Things (IoT)-based camera by Unmanned Aerial Vehicles (UAV) and stored in a remote database from where further learning can be done by Convolutional Neural Network (CNN). The novelty of this research is an attempt to hybridize the concept of IoT and ML in precision farming. As we all know, in the global economy, agriculture plays a vital role in relation to Gross Domestic Product (GDP). With the expansion of the human population, we need intensive farming for better livestock management. Considering the real-time scenario, AI-enabled applications can provide a rich recommendation to our farmers. The ML-based smart recommendation can classify plant diseases and provide a reliable decision support system to farmers. The authors have showcased here how a smart Agri-based model can help our countrymen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benos, L., Tagarakis, A.C., Dolias, G., Berruto, R., Kateris, D., Bochtis, D.: Machine learning in agriculture: a comprehensive updated review. Sensors 21, 3758 (2021). https://doi.org/10.3390/s21113758

    Article  Google Scholar 

  2. Tugrul, B., Elfatimi, E., Eryigit, R.: Convolutional neural networks in detection of plant leaf diseases: a review. Agriculture 12, 1192 (2022). https://doi.org/10.3390/agriculture12081192

    Article  Google Scholar 

  3. Sharma, R., Kamble, S.S., Gunasekaran, A., Kumar, V., Kumar, A.: A systematic literature review on machine learning applications for sustainable agriculture supply chain performance. Comput. Oper. Res. 119, 104926 (2020). https://doi.org/10.1016/j.cor.2020.104926

    Article  MathSciNet  MATH  Google Scholar 

  4. Tsao, R., Yu, Q.: Nematicidal activity of monoterpenoid compounds against economically important nematodes in agriculture. J. Essent. Oil Res. 12, 350–354 (2000). https://doi.org/10.1080/10412905.2000.9699533

    Article  Google Scholar 

  5. Team, K.: Simple. Flexible. Powerful. https://keras.io/. Accessed 14 Apr 2023

  6. Rivera, G., Porras, R., Florencia, R., Sánchez-Solís, J.P.: LiDAR applications in precision agriculture for cultivating crops: a review of recent advances. Comput. Electron. Agric. 207, 107737 (2023). https://doi.org/10.1016/j.compag.2023.107737

    Article  Google Scholar 

  7. Parry, M.L.: Climate change and world agriculture (2019). https://doi.org/10.4324/9780429345104

  8. Cravero, A., Sepúlveda, S.: Use and adaptations of machine learning in big data—applications in real cases in agriculture. Electronics 10, 552 (2021). https://doi.org/10.3390/electronics10050552

    Article  Google Scholar 

  9. Saleem, M.H., Potgieter, J., Arif, K.M.: Automation in agriculture by machine and deep learning techniques: a review of recent developments. Precision Agric. 22, 2053–2091 (2021). https://doi.org/10.1007/s11119-021-09806-x

    Article  Google Scholar 

  10. Ahmad, L., Nabi, F.: Agriculture 5.0: artificial intelligence, IOT, and machine learning (2021)

    Google Scholar 

  11. Koul, S.: Machine learning and deep learning in agriculture. Smart Agric. 1–19 (2021). https://doi.org/10.1201/b22627-1

  12. Mohapatra, S., Anand, K.: A brief model overview of personalized recommendation to citizens in the health‐care industry. Recomm. Syst. Mach. Learn. Artif. Intell. 27–44 (2020). https://doi.org/10.1002/9781119711582.ch2

  13. Liakos, K.G., et al.: Machine learning in agriculture: a review. Sensors 18(8), 2674 (2018). https://doi.org/10.3390/s18082674

  14. Mohinur Rahaman, M., Azharuddin, M.: Wireless sensor networks in agriculture through machine learning: a survey. Comput. Electron. Agric. 197, 106928 (2022). https://doi.org/10.1016/j.compag.2022.106928

    Article  Google Scholar 

  15. Linaza, M.T., et al.: Data-driven artificial intelligence applications for sustainable precision agriculture. Agronomy 11(6), 1227 (2021). https://doi.org/10.3390/agronomy11061227

  16. Ponnusamy, V., Natarajan, S.: Precision agriculture using advanced technology of IOT, unmanned aerial vehicle, augmented reality, and machine learning. Internet Things 207–229 (2021). https://doi.org/10.1007/978-3-030-52624-5_14

  17. Rastogi, R., Maheshwari, S., Garg, P., Rastogi, M., Kumar, P.: Analysis of agriculture production and impacts of climate change in South Asian region: a concern related with healthcare 4.0 using ML and sensors. In: A Fusion of Artificial Intelligence and Internet of Things for Emerging Cyber Systems, pp. 41–65 (2021). https://doi.org/10.1007/978-3-030-76653-5_3

  18. Arvanitis, K.G., Symeonaki, E.G.: Agriculture 4.0: the role of innovative smart technologies towards sustainable farm management. Open Agric. J. 14(1) (2020). https://doi.org/10.2174/1874331502014010130

  19. AlKameli, A., Hammad, M.: Automatic learning in agriculture: a survey. Int. J. Comput. Digit. Syst. 10, 1325–1345 (2021). https://doi.org/10.12785/ijcds/1001118

  20. Chaudhary, P., Sharma, A.: Response of nanogypsum on the performance of plant growth promotory bacteria recovered from nanocompound infested agriculture field. Environ. Ecol. 37(1B), 363–372 (2019)

    Google Scholar 

  21. Tripathy, P.K., Tripathy, A.K., Agarwal, A., Mohanty, S.P.: MyGreen: an IOT-enabled smart greenhouse for sustainable agriculture. IEEE Consum. Electron. Mag. 10, 57–62 (2021). https://doi.org/10.1109/mce.2021.3055930

    Article  Google Scholar 

  22. Šerá, B., Gajdová, I., Šerý, M., Špatenka, P.: New physicochemical treatment method of poppy seeds for agriculture and food industries. Plasma Sci. Technol. 15, 935–938 (2013). https://doi.org/10.1088/1009-0630/15/9/19

    Article  Google Scholar 

  23. Ali, A.: Alternaria epidemic of Apple in Kashmir. Afr. J. Microbiol. Res. 9, 831–837 (2015). https://doi.org/10.5897/ajmr2014.6611

  24. Geveke, D.A.V.I.D.J.: UV inactivation of bacteria in Apple Cider†. J. Food Prot. 68, 1739–1742 (2005). https://doi.org/10.4315/0362-028x-68.8.1739

  25. Mantzourani, I., Nouska, C., Terpou, A., Alexopoulos, A., Bezirtzoglou, E., Panayiotidis, M., Galanis, A., Plessas, S.: Production of a novel functional fruit beverage consisting of cornelian cherry juice and probiotic bacteria. Antioxidants 7, 163 (2018). https://doi.org/10.3390/antiox7110163

    Article  Google Scholar 

  26. Terzich, M., Pope, M.J., Cherry, T.E., Hollinger, J.: Survey of pathogens in poultry litter in the United States. J. Appl. Poultry Res. 9, 287–291 (2000). https://doi.org/10.1093/japr/9.3.287

    Article  Google Scholar 

  27. Blumenthal, U.J., et al.: Guidelines for the microbiological quality of treated wastewater used in agriculture: recommendations for revising WHO guidelines. Bull. World Health Organ. 78, 1104–1116 (2000)

    Google Scholar 

  28. Johnston, G.W., Vaupel, S., Kegel, F.R., Cadet, M.: Crop and farm diversification provide social benefits. Calif. Agric. 49, 10–16 (1995). https://doi.org/10.3733/ca.v049n01p10

    Article  Google Scholar 

  29. Hughes, D., Salathé, M.: An open access repository of images on plant health to enable the development of mobile disease diagnostics (2015). https://doi.org/10.48550/arXiv.1511.08060

  30. Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T., Wang, X., Wang, G., Cai, J., Chen, T.: Recent advances in convolutional neural networks. Pattern Recogn. 77, 354–377 (2018). https://doi.org/10.1016/j.patcog.2017.10.013

    Article  Google Scholar 

  31. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016). https://doi.org/10.1109/cvpr.2016.90

  32. Huang, Y., Cheng, Y., Chen, D., Lee, H., Ngiam, J., Le, Q.V., Chen, Z.: Gpipe: efficient training of giant neural networks using pipeline parallelism (2018). https://doi.org/10.48550/arXiv.1811.06965

  33. Zagoruyko, S., Komodakis, N.: Wide residual networks. In: Procedings of the British Machine Vision Conference 2016. https://doi.org/10.5244/c.30.87

  34. Tan, M., Le, Q.: Efficientnet: Rethinking model scaling for convolutional neural networks. In International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)

    Google Scholar 

  35. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., Adam, H.: Mobilenets: efficient convolutional neural networks for mobile vision applications (2017). https://doi.org/10.48550/arXiv.1704.04861

  36. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.-C.: MobileNetV2: inverted residuals and linear bottlenecks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (2018). https://doi.org/10.1109/cvpr.2018.00474

  37. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning (2016). https://doi.org/10.48550/arXiv.1611.01578

  38. Srivastava, S., et al.: Evaluation of designed consortium SNH-1 for efficient hydrolysis of agriculture waste to benefit bioethanol production. J. Clean. Prod. 288, 125601 (2021). https://doi.org/10.1016/j.jclepro.2020.125601

  39. Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M., Howard, A., Le, Q.V.: MnasNet: platform-aware neural architecture search for mobile. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019). https://doi.org/10.1109/cvpr.2019.00293

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Purkayastha, R., Mohapatra, S. (2023). A Conceptual Model for Analysis of Plant Diseases Through EfficientNet: Towards Precision Farming. In: Rivera, G., Rosete, A., Dorronsoro, B., Rangel-Valdez, N. (eds) Innovations in Machine and Deep Learning. Studies in Big Data, vol 134. Springer, Cham. https://doi.org/10.1007/978-3-031-40688-1_18

Download citation

Publish with us

Policies and ethics