Skip to main content

A Comparative Study of Machine Learning Methods to Predict COVID-19

  • Chapter
  • First Online:
Innovations in Machine and Deep Learning

Part of the book series: Studies in Big Data ((SBD,volume 134))

  • 260 Accesses

Abstract

First appearing in Wuhan City, Hubei region, China, the COVID-19 disease has threatened public health, trade, and the global economy. The World Health Organization has recommended testing for COVID-19 using a Reverse Transcription Polymerase Chain Reaction (RT-PCR) protocol to address diverse viral genes. Nevertheless, these test protocols demand RNA extraction kits, expensive machines, and trained technicians to operate them. Therefore, alternatives that are faster to diagnose, cheaper, and easier to access for patients and medical personnel are needed. This chapter presents a comparative analysis of machine-learning techniques for detecting COVID-19. The following four classifiers were trained, tested, and compared using the cross-validation technique with five folds: Random Forest, Stochastic Gradient Descent, Naive Bayes, and K- Nearest Neighbors. The dataset used in this project was the one the Government of Mexico has made available on the Internet on the Datos Abiertos Dirección General de Epidemiología web page. The results indicate that the Random Forest classifier performs best based on the area under the curve and the precision-recall curve metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fauci, A.S., Lane, H.C., Redfield, R.R.: Covid-19—navigating the uncharted. N. Engl. J. Med. 382(13), 1268–1269 (2020). https://doi.org/10.1056/NEJMe2002387

    Article  Google Scholar 

  2. Velavan, T.P., Meyer, C.G.: The COVID-19 epidemic. Tropical Med. Int. Health 25, 278–280 (2020). https://doi.org/10.1111/tmi.13383

    Article  Google Scholar 

  3. Weissleder, R., Lee, H., Ko, J., Pittet, M.J.: COVID-19 diagnostics in context (2020). https://doi.org/10.1126/scitranslmed.abc1931

  4. Atta-ur-Rahman, A., Sultan, K., Naseer, I., Majeed, R., Musleh, D., Salam-Gollapalli, M.A., Chabani, S., Ibrahim, N., Yamin-Siddiqui, S., Adnan-Khan, M.: Supervised machine learning-based prediction of COVID-19. Comput. Mater. Contin. 69(1), 21–34 (2021)

    Google Scholar 

  5. Ghassemi, M., Naumann, T., Schulam, P., Beam, A.L., Chen, I.Y., Ranganath, R.: A Review of Challenges and Opportunities in Machine Learning for Health. University of Toronto and Vector Institute, Toronto, Canada (2019). https://doi.org/10.48550/arXiv.1806.00388

  6. Giri, A.K., Rana, D.R.: Charting the challenges behind the testing of COVID-19 in developing countries: Nepal as a case study. In: Biosafety and Health, pp. 53–56 (2020). https://doi.org/10.1016/j.bsheal.2020.05.002

  7. Kramer, O.: “Scikit-Learn,” in Machine Learning for Evolution Strategies. Studies in Big Data (2016). https://doi.org/10.1007/978-3-319-33383-0_5

  8. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 2825–2830 (2011). https://doi.org/10.1145/3369834

  9. Mar-Cupido, R., García, V., Rivera, G., Sánchez, J.S.: Deep transfer learning for the recognition of types of face masks as a core measure to prevent the transmission of COVID-19. Appl. Soft Comput. 125, 109207 (2022). https://doi.org/10.1016/j.asoc.2022.109207

    Article  Google Scholar 

  10. Ghafouri-Fard, S., Mohammad-Rahimi, H., Motie, P., Minabi, M.A., Taheri, M., Nateghinia, S.: Application of machine learning in the prediction of COVID-19 daily new cases: a scoping review. Heliyon 7 (2021). https://doi.org/10.1016/j.heliyon.2021.e08143

  11. Painuli, D., Mishra, D., Bhardwaj, S., Aggarwal, M.: Forecast and prediction of COVID-19 using machine learning. In: Data Science for COVID-19. Academic Press, pp. 381–397 (2021). https://doi.org/10.1016/B978-0-12-824536-1.00027-7

  12. Abbasimehr, H., Paki, R.: Prediction of COVID-19 confirmed cases combining deep learning methods and Bayesian optimization. In: Chaos Solitons Fractals (2021). https://doi.org/10.1016/j.chaos.2020.110511

  13. Jin, S., Liu, G., Bai, Q.: Deep learning in COVID-19 diagnosis, prognosis and treatment selection. Mathematics 11(6), 1279 (2023). https://doi.org/10.3390/math11061279

    Article  Google Scholar 

  14. Uma, K.V., Birundha, C.S., Subasri, S., Harini, V.A.: Diagnosis of Covid-19 using Chest X-ray images using ensemble model. IETE J. Res. (2023). https://doi.org/10.1080/03772063.2023.2190542

  15. Deepa, S., Shakila, S.: Diagnosis and detection of COVID-19 infection on X-Ray and CT scans using deep learning based generative adversarial network. Comput. Methods Biomech. Biomed. Eng.: Imaging Vis. (2023). https://doi.org/10.1080/21681163.2023.2186143

  16. Yadaw, A.S., Li, Y.C., Bose, S., Iyengar, R., Bunyavanich, S., Pandey, G.: Clinical features of COVID-19 mortality: development and validation of a clinical prediction model. In: The Lancet Digital Health, p. 2 (2020). https://doi.org/10.1016/S2589-7500(20)30217-X

  17. Zoabi, Y., Deri-Rozov, S., Shomron, N.: Machine learning-based prediction of COVID-19 diagnosis based on symptoms. npj digital medicine (2021). https://doi.org/10.1038/s41746-020-00372-6

  18. Anggrawan, A., Mayadi, C.S., Krismono-Triwijoyo, B., Rismayati, R.: Comparative analysis of machine learning in predicting the treatment status of COVID-19 patients. J. Adv. Inf. Technol. 14(1), 56–65 (2023)

    Google Scholar 

  19. Barstugan, M., Ozkaya, U., Ozturk, S.: Coronavirus (COVID-19) classification using CT images by machine learning methods (2020). https://doi.org/10.48550/arXiv.2003.09424

  20. Alakus, T.B., Turkoglu, I.: Comparison of deep learning approaches to predict COVID-19 infection Chaos. Chaos, Solitons Fractals (2020). https://doi.org/10.1016/j.chaos.2020.110120

    Article  Google Scholar 

  21. Yan, L., Zhang, H., Goncalves, J., Xiao, Y., Wang, M., Guo, Y., Sun, C., Tang, X., Jin, L., Zhang, M., Huang, X., Xiao, Y., Cao, H., Chen, Y., Ren, T., Wang, F., Xiao, Y., Huang, S., Tan, X., Huang, N., Jiao, B., Zhang, Y., Luo, A., Mombaerts, L., Jin, J.: A machine learning-based model for survival prediction in patients with severe COVID-19 infection, medRxiv (2020). https://doi.org/10.1101/2020.02.27.20028027

  22. Muhammad, L., Algehyne, E., Usman, S., Ahmad, A., Chakraborty, C., Mohammed, I.A.: Supervised machine learning models for prediction of COVID-19 infection using epidemiology dataset SN COMPUT. SN Comput Sci. (2021). https://doi.org/10.1007/s42979-020-00394-7

    Article  Google Scholar 

  23. Moulaei, K., Shanbehzadeh, M., Mohammadi-Taghiabad, Z., Kazemi-Arpanahi, H.: Comparing machine learning algorithms for predicting COVID-19 mortality. BMC Med. Inform. Decis. Mak. (2022). https://doi.org/10.1186/s12911-021-01742-0

  24. Barouch, D.H.: Covid-19 vaccines - immunity, variants, boosters. N. Engl. J. Med. 387(11), 1011–1020 (2022). https://doi.org/10.1056/NEJMra2206573

    Article  Google Scholar 

  25. El Naqa, I., Murphy, M.J.: What is machine learning? In: El Naqa, I., Li, R., Murphy, M. (eds.) Machine Learning in Radiation Oncology. Springer, Cham. (2015). https://doi.org/10.1007/978-3-319-18305-3_1

  26. Ray, S.: A quick review of machine learning algorithms. In: 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon) (2019). https://doi.org/10.1109/COMITCon.2019.8862451

  27. Lahiri, R., Dey, S., Roy, S., Nag, S.: Detection of pulsars using an artificial neural network. In: Emerging Technology in Modelling and Graphics. Advances in Intelligent Systems and Computing, pp. 147–158. Springer (2020). https://doi.org/10.1007/978-981-13-7403-6_15

  28. Shaw, B., Suman, A., Chakraborty, B.: Wine quality analysis using machine learning. In: Emerging Technology in Modelling and Graphics. Advances in Intelligent Systems and Computing, pp. 239–247. Springer (2020). https://doi.org/10.1007/978-981-13-7403-6_23

  29. Scikit-learn, “Stochastic Gradient Descent,” Scikit-learn. https://scikit-learn.org/stable/modules/sgd.html

  30. G. d. México, “Datos Abiertos Dirección General de Epidemiología,” (2022). https://www.gob.mx/salud/documentos/datos-abiertos-152127

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Patricia Sánchez-Solís .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sánchez-Solís, J.P., Mata Gallegos, J.D., Olmos Sánchez, K.M., González Demoss, V. (2023). A Comparative Study of Machine Learning Methods to Predict COVID-19. In: Rivera, G., Rosete, A., Dorronsoro, B., Rangel-Valdez, N. (eds) Innovations in Machine and Deep Learning. Studies in Big Data, vol 134. Springer, Cham. https://doi.org/10.1007/978-3-031-40688-1_15

Download citation

Publish with us

Policies and ethics