Skip to main content

Visual Object Tracking Using Machine Learning

  • Conference paper
  • First Online:
Science, Engineering Management and Information Technology (SEMIT 2022)

Abstract

Visual object tracking has become a very active research area in recent years. Each year, a growing number of tracking algorithms are proposed. Object detection and tracking is a critical and challenging task in many critical computer vision applications, including automated video surveillance, traffic monitoring, autonomous robot navigation, and intelligent environments. Object tracking is segmenting an object of interest and tracking its velocity, orientation, and occlusion in a video scene to extract useful information. Over the last two decades, several object tracking approaches have been developed to design a robust object tracker that covers all practical obstacles in real-world operations. This paper reviews recent trends and advances in tracking and assesses the reliability of various trackers based on feature extraction techniques. In video processing, visual tracking has a wide range of applications. When a target is identified in one video frame, it is frequently advantageous to track that object in subsequent frames. Every successful frame in which the target is tracked yields more information about the target’s identity and activity. Because tracking is more straightforward than detection, tracking algorithms can require fewer computational resources than object detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xuan, S., et al.: Siamese networks with distractor-reduction method for long-term visual object tracking. Pattern Recogn. 112, 107698 (2021)

    Article  Google Scholar 

  2. Jiang, M., et al.: High speed long-term visual object tracking algorithm for real robot systems. Neurocomputing 434, 268–284 (2021)

    Article  Google Scholar 

  3. Mehmood, K., et al.: Context-aware and occlusion handling mechanism for online visual object tracking. Electronics 10, 43 (2021)

    Article  Google Scholar 

  4. Wang, Y., Ma, J.: Visual object tracking using surface fitting for scale and rotation estimation. KSII Trans. Internet Inf. Syst. 15 (2021)

    Google Scholar 

  5. Wu, J., et al.: Towards accurate estimation for visual object tracking with multi-hierarchy feature aggregation. Neurocomputing 451, 252–264 (2021)

    Article  Google Scholar 

  6. Rinnert, P., Nieder, A.: Neural code of motor planning and execution during goal-directed movements in crows. J. Neurosci. 41, 4060–4072 (2021)

    Article  Google Scholar 

  7. Clarence, A., et al.: Unscripted retargeting: reach prediction for haptic retargeting in virtual reality. In: 2021 IEEE Virtual Reality and 3D User Interfaces (VR), pp. 150–159 (2021)

    Google Scholar 

  8. Zhao, H., et al.: Deep mutual learning for visual object tracking. Pattern Recogn. 112, 107796 (2021)

    Article  Google Scholar 

  9. Guo, Q., et al.: Exploring the effects of blur and deblurring to visual object tracking. IEEE Trans. Image Process. 30, 1812–1824 (2021)

    Article  Google Scholar 

  10. Jia, S., et al.: IoU attack: towards temporally coherent black-box adversarial attack for visual object tracking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6709–6718 (2021)

    Google Scholar 

  11. Zhu, J., Zhang, G., Zhou, S., Li, K.: Relation-aware Siamese region proposal network for visual object tracking. Multimedia Tools Appl. 80(10), 15469–15485 (2021). https://doi.org/10.1007/s11042-021-10574-z

    Article  Google Scholar 

  12. Chen, Y., Wang, J., Xia, R., Zhang, Q., Cao, Z., Yang, K.: The visual object tracking algorithm research based on adaptive combination kernel. J. Ambient. Intell. Humaniz. Comput. 10(12), 4855–4867 (2019). https://doi.org/10.1007/s12652-018-01171-4

    Article  Google Scholar 

  13. Lee, S.-H., et al.: Learning discriminative appearance models for online multi-object tracking with appearance discriminability measures. IEEE Access 6, 67316–67328 (2018)

    Article  Google Scholar 

  14. He, M., et al.: Fast online multi-pedestrian tracking via integrating motion model and deep appearance model. IEEE Access 7, 89475–89486 (2019)

    Article  Google Scholar 

  15. Franzoni, V., et al.: Emotional machines: the next revolution. In: Web Intelligence, pp. 1–7 (2019)

    Google Scholar 

  16. Li, S., Yeung, D.-Y.: Visual object tracking for unmanned aerial vehicles: a benchmark and new motion models. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

  17. Cakir, S., Cetin, A.E.: Visual object tracking using Fourier domain phase information. Signal Image Video Process. 1–8 (2021)

    Google Scholar 

  18. Yuan, D., Zhang, X., Liu, J., Li, D.: A multiple feature fused model for visual object tracking via correlation filters. Multimedia Tools Appl. 78(19), 27271–27290 (2019). https://doi.org/10.1007/s11042-019-07828-2

    Article  Google Scholar 

  19. Chowdhury, P.R., et al.: Brain Inspired Object Recognition System. arXiv preprint arXiv:2105.07237 (2021)

  20. Dawod, M., Hanna, S.: BIM-assisted object recognition for the on-site autonomous robotic assembly of discrete structures. Constr. Robot. 3(1–4), 69–81 (2019). https://doi.org/10.1007/s41693-019-00021-9

    Article  Google Scholar 

  21. Poza-Lujan, J.-L., et al.: Distributed architecture to integrate sensor information: object recognition for smart cities. Sensors 20, 112 (2020)

    Article  Google Scholar 

  22. Girish, S., et al.: The lottery ticket hypothesis for object recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 762–771 (2021)

    Google Scholar 

  23. Fu, J., et al.: A multi-hypothesis approach to pose ambiguity in object-based SLAM. arXiv preprint arXiv:2108.01225 (2021)

  24. Kutschbach, T., et al.: Sequential sensor fusion combining probability hypothesis density and kernelized correlation filters for multi-object tracking in video data. In: 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 1–5 (2017)

    Google Scholar 

  25. Wang, Q., et al.: HypoML: visual analysis for hypothesis-based evaluation of machine learning models. IEEE Trans. Visual Comput. Graphics 27, 1417–1426 (2020)

    Article  Google Scholar 

  26. Long, L., et al.: Object-level representation learning for few-shot image classification. arXiv preprint arXiv:1805.10777 (2018)

  27. Hubert, C.: More on the model: building on the ruins of representation. Archit. Des. 91, 14–21 (2021)

    Google Scholar 

  28. Li, Z., et al.: Self-guided adaptation: progressive representation alignment for domain adaptive object detection. arXiv preprint arXiv:2003.08777 (2020)

  29. Huang, J.: Auto-attentional mechanism in multi-domain convolutional neural networks for improving object tracking. Int. J. Intell. Comput. Cybern. (2021)

    Google Scholar 

  30. Bekiroglu, Y., et al.: Learning tactile characterizations of object-and pose-specific grasps. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1554–1560 (2011)

    Google Scholar 

  31. La Porta, F., et al.: Unified Balance Scale: an activity-based, bed to community, and aetiology-independent measure of balance calibrated with Rasch analysis. J. Rehabil. Med. 43, 435–444 (2011)

    Article  Google Scholar 

  32. Du, B., et al.: A discriminative manifold learning based dimension reduction method for hyperspectral classification. Int. J. Fuzzy Syst. 14, 272–277 (2012)

    Google Scholar 

  33. Hsiao, E., Hebert, M.: Occlusion reasoning for object detection under arbitrary viewpoint. IEEE Trans. Pattern Anal. Mach. Intell. 36, 1803–1815 (2014)

    Article  Google Scholar 

  34. Bajcsy, R.: Three-dimensional object representation. In: Kittler, J., Fu, K.S., Pau, LF. (eds) Pattern Recognition Theory and Applications, pp. 283–295. Springer, New York (1982). https://doi.org/10.1007/978-94-009-7772-3_17

  35. Moghaddam, B., Pentland, A.: Probabilistic visual learning for object representation. IEEE Trans. Pattern Anal. Mach. Intell. 19, 696–710 (1997)

    Article  Google Scholar 

  36. Laurentini, A.: The visual hull concept for Silhouette-based image understanding. IEEE Trans. Pattern Anal. Mach. Intell. 16, 150–162 (1994)

    Article  Google Scholar 

  37. Ashok, V., Ganapathy, D.: A geometrical method to classify face forms. J. Oral Biol. Craniofac. Res. 9, 232–235 (2019)

    Article  Google Scholar 

  38. Wagemans, J., et al.: Identification of everyday objects on the basis of Silhouette and outline versions. Perception 37, 207–244 (2008)

    Article  Google Scholar 

  39. Sapp, B., et al.: Cascaded models for articulated pose estimation. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) Computer Vision – ECCV 2010. LNCS, vol. 6312, pp. 406–420. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15552-9_30

  40. Geldof, A.A.: Models for cancer skeletal metastasis: a reappraisal of Batson’s plexus. Anticancer Res. 17, 1535–1539 (1997)

    Google Scholar 

  41. Jarrett, K., et al.: What is the best multi-stage architecture for object recognition? In: 2009 IEEE 12th International Conference on Computer Vision, pp. 2146–2153 (2009)

    Google Scholar 

  42. Xu, G., Zhang, Z.: Epipolar Geometry in Stereo, Motion and Object Recognition: A Unified Approach, vol. 6. Springer, New York (2013). https://doi.org/10.1007/978-94-015-8668-9

  43. Riesenhuber, M., Poggio, T.: Models of object recognition. Nat. Neurosci. 3, 1199–1204 (2000)

    Article  Google Scholar 

  44. Grasselli, G., et al.: Quantitative three-dimensional description of a rough surface and parameter evolution with shearing. Int. J. Rock Mech. Min. Sci. 39, 789–800 (2002)

    Article  Google Scholar 

  45. Dutton, Z., et al.: Attaining the quantum limit of superresolution in imaging an object’s length via predetection spatial-mode sorting. Phys. Rev. A 99, 033847 (2019)

    Article  Google Scholar 

  46. Betke, M., Makris, N.C.: Information-conserving object recognition. In: Sixth International Conference on Computer Vision (IEEE Cat. No. 98CH36271), pp. 145–152 (1998)

    Google Scholar 

  47. Barrett, H.H., et al.: Objective assessment of image quality. II. Fisher information, Fourier crosstalk, and figures of merit for task performance. JOSA A 12, 834–852 (1995)

    Article  Google Scholar 

  48. Betke, M., Makris, N.C.: Recognition, resolution, and complexity of objects subject to affine transformations. Int. J. Comput. Vision 44, 5–40 (2001)

    Article  MATH  Google Scholar 

  49. Tian, T., et al.: Cramer-Rao bounds of localization estimation for integrated radar and communication system. IEEE Access 8, 105852–105863 (2020)

    Article  Google Scholar 

  50. Zheng, Y., et al.: A new precision evaluation method for signals of opportunity based on Cramer-Rao lower bound in finite error. In: 2019 Chinese Control Conference (CCC), pp. 3934–3939 (2019)

    Google Scholar 

  51. Lee, S., et al.: Estimation error bound of battery electrode parameters with limited data window. IEEE Trans. Industr. Inf. 16, 3376–3386 (2019)

    Article  Google Scholar 

  52. Li, X., Yang, F., Cheng, H., Liu, W., Shen, D.: Contour knowledge transfer for salient object detection. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11219, pp. 370–385. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01267-0_22

    Chapter  Google Scholar 

  53. Gong, X.-Y., et al.: An overview of contour detection approaches. Int. J. Autom. Comput. 15, 656–672 (2018)

    Article  Google Scholar 

  54. Philbrick, K.A., et al.: RIL-contour: a medical imaging dataset annotation tool for and with deep learning. J. Digit. Imaging 32, 571–581 (2019)

    Article  Google Scholar 

  55. Dai, Y., et al.: Trajectory tracking control for seafloor tracked vehicle by adaptive neural-fuzzy inference system algorithm. Int. J. Comput. Commun. Control 13, 465–476 (2018)

    Article  Google Scholar 

  56. Guan, W., et al.: Visible light dynamic positioning method using improved Camshift-Kalman algorithm. IEEE Photonics J. 11, 1–22 (2019)

    Google Scholar 

  57. Hu, B., Niebur, E.: A recurrent neural model for proto-object based contour integration and figure-ground segregation. J. Comput. Neurosci. 43(3), 227–242 (2017). https://doi.org/10.1007/s10827-017-0659-3

    Article  MATH  Google Scholar 

  58. Qin, J., et al.: An encrypted image retrieval method based on Harris corner optimization and LSH in cloud computing. IEEE Access 7, 24626–24633 (2019)

    Article  Google Scholar 

  59. Cheng, J., et al.: Hidden Markov model-based nonfragile state estimation of switched neural network with probabilistic quantized outputs. IEEE Trans. Cybern. 50, 1900–1909 (2019)

    Article  Google Scholar 

  60. Cai, D., et al.: A moving target detecting and tracking system based on DSP. In: 2017 International Conference on Optical Instruments and Technology: Optoelectronic Imaging/Spectroscopy and Signal Processing Technology, p. 106200Z (2018)

    Google Scholar 

  61. Dimeas, F., Doulgeri, Z.: Progressive automation of periodic tasks on planar surfaces of unknown pose with hybrid force/position control. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5246–5252 (2020)

    Google Scholar 

  62. Zong, B., et al.: Deep autoencoding Gaussian mixture model for unsupervised anomaly detection. In: International Conference on Learning Representations (2018)

    Google Scholar 

  63. Lee, H., Kim, D.: Salient region-based online object tracking. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1170–1177 (2018)

    Google Scholar 

  64. Yu, T.T., War, N.: Condensed object representation with corner HOG features for object classification in outdoor scenes. In: 2017 18th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD), pp. 77–82 (2017)

    Google Scholar 

  65. Wang, X., et al.: Aerial infrared object tracking via an improved long-term correlation filter with optical flow estimation and SURF matching. Infrared Phys. Technol. 116, 103790 (2021)

    Article  Google Scholar 

  66. Sadegh, A.M., Worek, W.M.: Marks’ Standard Handbook for Mechanical Engineers: McGraw-Hill Education (2018)

    Google Scholar 

  67. Chhabra, P., Garg, N.K., Kumar, M.: Content-based image retrieval system using ORB and SIFT features. Neural Comput. Appl. 32(7), 2725–2733 (2018). https://doi.org/10.1007/s00521-018-3677-9

    Article  Google Scholar 

  68. Amaya, M., et al.: Adaptive sequential Monte Carlo for posterior inference and model selection among complex geological priors. Geophys. J. Int. 226, 1220–1238 (2021)

    Article  Google Scholar 

  69. Bae, S.-H., Yoon, K.-J.: Confidence-based data association and discriminative deep appearance learning for robust online multi-object tracking. IEEE Trans. Pattern Anal. Mach. Intell. 40, 595–610 (2017)

    Article  Google Scholar 

  70. Mbakop, S., et al.: Inverse dynamics model-based shape control of soft continuum finger robot using parametric curve. IEEE Robot. Autom. Lett. 6, 8053–8060 (2021)

    Article  Google Scholar 

  71. Liu, F., et al.: Robust visual tracking revisited: From correlation filter to template matching. IEEE Trans. Image Process. 27, 2777–2790 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  72. Kaskman, R., et al.: HomebrewedDB: RGB-D dataset for 6D pose estimation of 3D objects. In: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops (2019)

    Google Scholar 

  73. Xu, J., et al.: Bilevel distance metric learning for robust image recognition. Adv. Neural. Inf. Process. Syst. 31, 4198–4207 (2018)

    Google Scholar 

  74. Cabeza de Vaca, I., et al.: Enhanced Monte Carlo methods for modeling proteins including computation of absolute free energies of binding. J. Chem. Theory Comput. 14, 3279–3288 (2018)

    Article  Google Scholar 

  75. Guler, Z., et al.: A new object tracking framework for interest point based feature extraction algorithms. Elektronika ir Elektrotechnika 26, 63–71 (2020)

    Article  Google Scholar 

  76. Pareek, A., et al.: A robust surf-based online human tracking algorithm using adaptive object model. In: Proceedings of International Conference on Artificial Intelligence and Applications, pp. 543–551 (2021)

    Google Scholar 

  77. Rejeesh, M.: Interest point based face recognition using adaptive neuro fuzzy inference system. Multimedia Tools Appl. 78, 22691–22710 (2019)

    Article  Google Scholar 

  78. Kann, K., et al.: Fortification of neural morphological segmentation models for polysynthetic minimal-resource languages. arXiv preprint arXiv:1804.06024 (2018)

  79. Noyel, G., et al.: Morphological segmentation of hyperspectral images. arXiv preprint arXiv:2010.00853 (2020)

  80. Yang, X., et al.: A face detection method based on skin color model and improved AdaBoost algorithm. Traitement du Signal, vol. 37 (2020)

    Google Scholar 

  81. Hameed, K., et al.: A sample weight and AdaBoost CNN-based coarse to fine classification of fruit and vegetables at a supermarket self-checkout. Appl. Sci. 10, 8667 (2020)

    Article  Google Scholar 

  82. Sun, Y., et al.: Active perception for foreground segmentation: an RGB-D data-based background modeling method. IEEE Trans. Autom. Sci. Eng. 16, 1596–1609 (2019)

    Article  Google Scholar 

  83. Voigtlaender, P., et al.: MOTS: multi-object tracking and segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7942–7951 (2019)

    Google Scholar 

  84. Gunjal, P.R., et al.: Moving object tracking using Kalman filter. In: 2018 International Conference on Advances in Communication and Computing Technology (ICACCT), pp. 544–547 (2018)

    Google Scholar 

Download references

Acknowledgments

This research was supported by Princess Sumaya University for Technology (PSUT) and Researchers Supporting Program (TUMA-Project-2021-14), AlMaarefa University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ammar Odeh .

Editor information

Editors and Affiliations

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Odeh, A., Keshta, I., Al-Fayoumi, M. (2023). Visual Object Tracking Using Machine Learning. In: Mirzazadeh, A., Erdebilli, B., Babaee Tirkolaee, E., Weber, GW., Kar, A.K. (eds) Science, Engineering Management and Information Technology. SEMIT 2022. Communications in Computer and Information Science, vol 1809. Springer, Cham. https://doi.org/10.1007/978-3-031-40398-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40398-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40397-2

  • Online ISBN: 978-3-031-40398-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics