Skip to main content

Cardiovascular Consequences of Metabolic Disturbances in Women

  • Chapter
  • First Online:
Biology of Women’s Heart Health

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 26))

Abstract

Metabolic disorders in humans are characterized by hyperglycemia and hyperinsulinemia, insulin resistance, impaired glucose intolerance, dyslipidemia, hypercholesterolemia, and hypertriglyceridemia affecting main systemic parameters as well as cells and organs such as cardiometabolic disturbances. These create high risks for the prevalence of various diseases, including cardiovascular diseases (CVDs). Metabolism is defined as a process in cells to provide energy and remove waste products via catabolism and anabolism. Metabolic syndrome (MetS) is present in about 5% of the population with normal body weight, 20% who are overweight, and 60% of those who are considered obese, while it increases with age in a sex-specific manner. For instance, MetS are slightly higher in men below 50 years, with a marked reversal after 50 years (https://www.webmd.com/heart-disease/guide/metabolic-syndrome). Sex differences in CVDs have been reported in human and animal studies, how they are involved in women's diseases, effectiveness of therapies, and clinical outcomes compared to men, however, there are various complex molecular mechanisms underlining these differences which needs to be clarified. According to current knowledge on sex-dependent differences, electrophysiological parameters, contractility, several intracellular signaling mechanisms concentrated on cellular metabolism, gene and protein expressions, and posttranslational protein modification in the heart. Taking into consideration, the pleiotropic effects of estrogen, it exerts a protective effect on the cardiovascular system throughout the premenopausal period of women. The cardioprotective action of estrogen on the cardiovascular system largely depends on its critical role in the prevention and/or regulation of oxidative stress in the heart.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yoon C et al (2019) Problematic eating behaviors and attitudes predict long-term incident metabolic syndrome and diabetes: the coronary artery risk development in young adults study. Int J Eat Disord 52(3):304–308

    Google Scholar 

  2. Jeong E-M et al (2012) Metabolic stress, reactive oxygen species, and arrhythmia. J Mol Cell Cardiol 52(2):454–463

    Google Scholar 

  3. Suhre K et al (2011) Human metabolic individuality in biomedical and pharmaceutical research. Nature 477(7362):54–60

    Google Scholar 

  4. Boyer SW, Barclay LJ, Burrage LC (2015) Inherited metabolic disorders: Aspects of chronic nutrition management. Nutr Clin Pract 30(4):502–510

    Google Scholar 

  5. Reaven GM (1988) Role of insulin resistance in human disease. Diabetes 37(12):1595–1607

    Google Scholar 

  6. Ferrannini E et al (1997) On behalf of the European Group for the study of insulin resistance (EGIR). Insulin resistance and hypersecretion in obesity. J Clin Invest, 1997. 100(5): p. 1166–1173.

    Google Scholar 

  7. Zhang Y, Sowers JR, Ren J (2012). Pathophysiological insights into cardiovascular health in metabolic syndrome. Exp Diabetes Res 2012:320534

    Google Scholar 

  8. Borghetti G et al (2018) Diabetic cardiomyopathy: current and future therapies. Beyond glycemic control. Front Physiol 9:1514

    Google Scholar 

  9. Reaven GM (1995) Pathophysiology of insulin resistance in human disease. Physiol Rev 75(3):473–486

    Google Scholar 

  10. Ormazabal V et al (2018) Association between insulin resistance and the development of cardiovascular disease. Cardiovasc Diabetol 17(1):1–14

    Google Scholar 

  11. Chinali M et al (2008) Cardiac markers of pre-clinical disease in adolescents with the metabolic syndrome: the strong heart study. J Am Coll Cardiol 52(11):932–938

    Google Scholar 

  12. Voulgari C et al (2010) The impact of metabolic syndrome on left ventricular myocardial performance. Diabetes Metab Res Rev 26(2):121–127

    Google Scholar 

  13. Galassetti P (2012) Inflammation and oxidative stress in obesity, metabolic syndrome, and diabetes. Exp Diabetes Res 2012:943706

    Google Scholar 

  14. Ilkun O, Boudina S (2013) Cardiac dysfunction and oxidative stress in the metabolic syndrome: an update on antioxidant therapies. Curr Pharm Des 19(27):4806–4817

    Google Scholar 

  15. Durak A et al (2018) A SGLT2 inhibitor dapagliflozin suppresses prolonged ventricular-repolarization through augmentation of mitochondrial function in insulin-resistant metabolic syndrome rats. Cardiovasc Diabetol 17(1):1–17

    Google Scholar 

  16. Gaziano TA et al (2010) Growing epidemic of coronary heart disease in low- and middle-income countries. Curr Probl Cardiol 35(2):72–115

    Google Scholar 

  17. Bakhtiyari M et al (2022) Contribution of obesity and cardiometabolic risk factors in developing cardiovascular disease: a population-based cohort study. Sci Rep 12(1):1544

    Google Scholar 

  18. Hruby A, Hu FB (2015) The Epidemiology of obesity: a big picture. Pharmacoeconomics 33(7):673–689

    Google Scholar 

  19. Han TS, Lean ME (2016) A clinical perspective of obesity, metabolic syndrome and cardiovascular disease. JRSM Cardiovasc Dis 5:2048004016633371

    Google Scholar 

  20. Krishnan KC, Mehrabian M, Lusis AJ (2018) Sex differences in metabolism and cardiometabolic disorders. Curr Opin Lipidol 29(5):404

    Google Scholar 

  21. Bentley-Lewis R, Koruda K, Seely EW (2007) The metabolic syndrome in women. Nat Clin Pract Endocrinol Metab 3(10):696–704

    Google Scholar 

  22. Dwaib HS, AlZaim I, Ajouz G, Eid AH, El-Yazbi A (2022). Sex differences in cardiovascular impact of early metabolic impairment: interplay between dysbiosis and adipose inflammation. Mol Pharmacol 102(1):481–500

    Google Scholar 

  23. Murphy MO, Loria AS (2017) Sex-specific effects of stress on metabolic and cardiovascular disease: are women at higher risk? Am J Physiol Regul Integr Comp Physiol 313(1):R1-r9

    Google Scholar 

  24. Regitz-Zagrosek V et al (2016) Sexin cardiovascular diseases: impact on clinical manifestations, management, and outcomes. Eur Heart J 37(1):24–34

    Google Scholar 

  25. Hegner P et al (2021) The effect of sex and sex hormones on cardiovascular disease, heart failure, diabetes, and atrial fibrillation in sleep apnea. Front Physiol 12:741896

    Google Scholar 

  26. Beigh SH, Jain S (2012) Prevalence of metabolic syndrome and sexdifferences. Bioinformation 8(13):613–616

    Google Scholar 

  27. Li F-E et al (2021) Sex-based differences in and risk factors for metabolic syndrome in adults aged 40 years and above in Northeast China: results from the cross-sectional China national stroke screening survey. BMJ Open 11(3):e038671

    Google Scholar 

  28. Ter Horst R et al (2020) Sex-specific regulation of inflammation and metabolic syndrome in obesity. Arterioscler Thromb Vasc Biol 40(7):1787–1800

    Google Scholar 

  29. Mosca L, Barrett-Connor E, Wenger NK (2011) Sex/sexdifferences in cardiovascular disease prevention: what a difference a decade makes. Circulation 124(19):2145–2154

    Google Scholar 

  30. Gerdts E, Regitz-Zagrosek V (2019) Sex differences in cardiometabolic disorders. Nat Med 25(11):1657–1666

    Google Scholar 

  31. Mayer-Davis EJ et al (2017) Incidence trends of Type 1 and Type 2 diabetes among youths, 2002–2012. N Engl J Med 376(15):1419–1429

    Google Scholar 

  32. Urakami T et al (2005) Annual incidence and clinical characteristics of type 2 diabetes in children as detected by urine glucose screening in the Tokyo metropolitan area. Diabetes Care 28(8):1876–1881

    Google Scholar 

  33. Sattar N (2013) Sexaspects in type 2 diabetes mellitus and cardiometabolic risk. Best Pract Res Clin Endocrinol Metab 27(4):501–507

    Google Scholar 

  34. Brent DA, Silverstein M (2013) Shedding light on the long shadow of childhood adversity. JAMA 309(17):1777–1778

    Google Scholar 

  35. Felitti VJ et al (1998) Relationship of childhood abuse and household dysfunction to many of the leading causes of death in adults. The adverse childhood experiences (ACE) study. Am J Prev Med 14(4):245–58

    Google Scholar 

  36. Danese A et al (2009) Adverse childhood experiences and adult risk factors for age-related disease: depression, inflammation, and clustering of metabolic risk markers. Arch Pediatr Adolesc Med 163(12):1135–1143

    Google Scholar 

  37. Spahis S, Borys J-M, Levy E (2017) Metabolic syndrome as a multifaceted risk factor for oxidative stress. Antioxid Redox Signal 26(9):445–461

    Google Scholar 

  38. Haffner S, Taegtmeyer H (2003) Epidemic obesity and the metabolic syndrome. Circulation 108(13):1541–1545

    Google Scholar 

  39. Inoguchi T et al (2000) High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C–dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes 49(11):1939–1945

    Google Scholar 

  40. Jacob C, Jamier V, Ba LA (2011) Redox active secondary metabolites. Curr Opin Chem Biol 15(1):149–155

    Google Scholar 

  41. Furukawa S et al (2004) Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 114(12):1752–1761

    Google Scholar 

  42. Lee H et al (2009) Reactive oxygen species facilitate adipocyte differentiation by accelerating mitotic clonal expansion. J Biol Chem 284(16):10601–10609

    Google Scholar 

  43. Xiang D, Liu Y, Zhou S, Zhou E, Wang Y (2021) Protective effects of estrogen on cardiovascular disease mediated by oxidative stress. Oxid Med Cell Longev 2021:5523516

    Google Scholar 

  44. Bellanti F et al (2013) Sex hormones modulate circulating antioxidant enzymes: impact of estrogen therapy. Redox Biol 1:340–346

    Google Scholar 

  45. Strehlow K et al (2003) Modulation of antioxidant enzyme expression and function by estrogen. Circ Res 93(2):170–177

    Google Scholar 

  46. Wenger NK, Speroff L, Packard B (1993) Cardiovascular health and disease in women. N Engl J Med 329(4):247–256

    Google Scholar 

  47. Park S-Y et al (2016) Mitochondrial function in heart failure: The impact of ischemic and non-ischemic etiology. Int J Cardiol 220:711–717

    Google Scholar 

  48. Lemieux H et al (2011) Mitochondrial respiratory control and early defects of oxidative phosphorylation in the failing human heart. Int J Biochem Cell Biol 43(12):1729–1738

    Google Scholar 

  49. Olgar Y et al (2018) Increased free Zn(2+) correlates induction of sarco(endo)plasmic reticulum stress via altered expression levels of Zn(2+)-transporters in heart failure. J Cell Mol Med 22(3):1944–1956

    Google Scholar 

  50. Anderson EJ et al (2009) Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans. J Clin Invest 119(3):573–581

    Google Scholar 

  51. Reaven G (2012) Insulin resistance and coronary heart disease in nondiabetic individuals. Arterioscler Thromb Vasc Biol 32(8):1754–1759

    Google Scholar 

  52. Gast KB et al (2012) Insulin resistance and risk of incident cardiovascular events in adults without diabetes: meta-analysis. PLoS ONE 7(12):e52036

    Google Scholar 

  53. Dimitriadis G et al (2011) Insulin effects in muscle and adipose tissue. Diabetes Res Clin Pract 93(Suppl 1):S52–S59

    Google Scholar 

  54. Wang CC, Gurevich I, Draznin B (2003) Insulin affects vascular smooth muscle cell phenotype and migration via distinct signaling pathways. Diabetes 52(10):2562–2569

    Google Scholar 

  55. Bonora E (2005) Insulin resistance as an independent risk factor for cardiovascular disease: clinical assessment and therapy approaches. Av Diabetol 21(4):255–261

    Google Scholar 

  56. Najjar SM et al (2005) Insulin acutely decreases hepatic fatty acid synthase activity. Cell Metab 2(1):43–53

    Google Scholar 

  57. Zhang H, Zhang C (2010) Adipose “talks” to distant organs to regulate insulin sensitivity and vascular function. Obesity (Silver Spring, Md) 18(11):2071

    Google Scholar 

  58. Yokoyama I et al (1998) Organ-specific insulin resistance in patients with noninsulin-dependent diabetes mellitus and hypertension. J Nucl Med 39(5):884–889

    Google Scholar 

  59. Tuncay E et al (2019) Zn2+-transporters ZIP7 and ZnT7 play important role in progression of cardiac dysfunction via affecting sarco (endo) plasmic reticulum-mitochondria coupling in hyperglycemic cardiomyocytes. Mitochondrion 44:41–52

    Google Scholar 

  60. Wang CCL, Goalstone ML, Draznin B (2004) Molecular mechanisms of insulin resistance that impact cardiovascular biology. Diabetes 53(11):2735–2740

    Google Scholar 

  61. Cho H et al (2001) Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta). Science 292(5522):1728–1731

    Google Scholar 

  62. Wei MC et al (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292(5517):727–730

    Google Scholar 

  63. Dresner A et al (1999) Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. J Clin Invest 103(2):253–259

    Google Scholar 

  64. Daiber A (2010) Redox signaling (cross-talk) from and to mitochondria involves mitochondrial pores and reactive oxygen species. Biochim Biophys Acta 1797(6–7):897–906

    Google Scholar 

  65. Herrmann JM et al (2012) Biogenesis of mitochondrial proteins. Adv Exp Med Biol 748:41–64

    Google Scholar 

  66. Montgomery MK, Turner N (2015) Mitochondrial dysfunction and insulin resistance: an update. Endocr Connect 4(1):R1-r15

    Google Scholar 

  67. Malhotra JD, Kaufman RJ (2011) ER stress and its functional link to mitochondria: role in cell survival and death. Cold Spring Harb Perspect Biol 3(9):a004424

    Google Scholar 

  68. Calì T, Ottolini D, Brini M (2012) Mitochondrial Ca(2+) as a key regulator of mitochondrial activities. Adv Exp Med Biol 942:53–73

    Google Scholar 

  69. Tuncay E et al (2019) β3-adrenergic receptor activation plays an important role in the depressed myocardial contractility via both elevated levels of cellular free Zn2+ and reactive nitrogen species. J Cell Physiol 234(8):13370–13386

    Google Scholar 

  70. Sorrentino A et al (2017) Hyperglycemia induces defective Ca2+ homeostasis in cardiomyocytes. Am J Physiol Heart Circ Physiol 312(1):H150-h161

    Google Scholar 

  71. Giorgi C et al (2012) Mitochondrial Ca(2+) and apoptosis. Cell Calcium 52(1):36–43

    Google Scholar 

  72. Choi CS et al (2008) Paradoxical effects of increased expression of PGC-1alpha on muscle mitochondrial function and insulin-stimulated muscle glucose metabolism. Proc Natl Acad Sci U S A 105(50):19926–19931

    Google Scholar 

  73. Christian P, Su Q (2014) MicroRNA regulation of mitochondrial and ER stress signaling pathways: implications for lipoprotein metabolism in metabolic syndrome. Am J Physiol Endocrinol Metab 307(9):E729–E737

    Google Scholar 

  74. Kolar F, Ostadal B (2013) Sex differences in cardiovascular function. Acta Physiol (Oxf) 207(4):584–587

    Google Scholar 

  75. Humphries KH et al (2017) Sex differences in cardiovascular disease - Impact on care and outcomes. Front Neuroendocrinol 46:46–70

    Google Scholar 

  76. Pianosi PT et al (2018) Sex differences in fitness and cardiac function during exercise in adolescents with chronic fatigue. Scand J Med Sci Sports 28(2):524–531

    Google Scholar 

  77. Huxley VH (2007) Sex and the cardiovascular system: the intriguing tale of how women and men regulate cardiovascular function differently. Adv Physiol Educ 31(1):17–22

    Google Scholar 

  78. Celentano A et al (2003) Sexdifferences in left ventricular chamber and midwall systolic function in normotensive and hypertensive adults. J Hypertens 21(7):1415–1423

    Google Scholar 

  79. McKenna DS et al (2006) Gender-related differences in fetal heart rate during first trimester. Fetal Diagn Ther 21(1):144–147

    Google Scholar 

  80. Papanek PE et al (1998) Gender-specific protection from microvessel rarefaction in female hypertensive rats. Am J Hypertens 11(8 Pt 1):998–1005

    Google Scholar 

  81. Chopra KK et al (2009) Sex differences in hormonal responses to a social stressor in chronic major depression. Psychoneuroendocrinology 34(8):1235–1241

    Google Scholar 

  82. Möller-Leimkühler AM (2010) Higher comorbidity of depression and cardiovascular disease in women: a biopsychosocial perspective. World J Biol Psychiatry 11(8):922–933

    Google Scholar 

  83. Kautzky-Willer A, Harreiter J, Pacini G (2016) Sex and sex differences in risk, pathophysiology and complications of Type 2 diabetes mellitus. Endocr Rev 37(3):278–316

    Google Scholar 

  84. Fourny N et al (2021) Sex differences of the diabetic heart. Front Physiol 12:661297

    Google Scholar 

  85. Paynter NP et al (2018) Metabolic predictors of incident coronary heart disease in women. Circulation 137(8):841–853

    Google Scholar 

  86. Pucci G et al (2017) Sex- and gender-related prevalence, cardiovascular risk and therapeutic approach in metabolic syndrome: a review of the literature. Pharmacol Res 120:34–42

    Google Scholar 

  87. Murphy E et al (2017) Sex differences in metabolic cardiomyopathy. Cardiovasc Res 113(4):370–377

    Google Scholar 

  88. Sergi G et al (2020) Sexdifferences in the impact of metabolic syndrome components on mortality in older people: a systematic review and meta-analysis. Nutr Metab Cardiovasc Dis 30(9):1452–1464

    Google Scholar 

  89. Huebschmann AG et al (2019) Sex differences in the burden of type 2 diabetes and cardiovascular risk across the life course. Diabetologia 62(10):1761–1772

    Google Scholar 

  90. Strack C et al (2022) Sexdifferences in cardiometabolic health and disease in a cross-sectional observational obesity study. Biol Sex Differ 13(1):8

    Google Scholar 

  91. Merz AA, Cheng S (2016) Sex differences in cardiovascular ageing. Heart 102(11):825–831

    Google Scholar 

  92. Regitz-Zagrosek V, Kararigas G (2017) Mechanistic pathways of sex differences in cardiovascular disease. Physiol Rev 97(1):1–37

    Google Scholar 

  93. Charchar FJ et al (2003) Y is there a risk to being male? Trends Endocrinol Metab 14(4):163–168

    Google Scholar 

  94. Silkaitis K, Lemos B (2014) Sex-biased chromatin and regulatory cross-talk between sex chromosomes, autosomes, and mitochondria. Biol Sex Differ 5(1):2

    Google Scholar 

  95. Haddad GE et al (2008) Human cardiac-specific cDNA array for idiopathic dilated cardiomyopathy: sex-related differences. Physiol Genomics 33(2):267–277

    Google Scholar 

  96. Heidecker B et al (2010) The gene expression profile of patients with new-onset heart failure reveals important gender-specific differences. Eur Heart J 31(10):1188–1196

    Google Scholar 

  97. Kararigas G et al (2014) Comparative proteomic analysis reveals sex and estrogen receptor β effects in the pressure overloaded heart. J Proteome Res 13(12):5829–5836

    Google Scholar 

  98. Kararigas G et al (2014) Genetic background defines the regulation of postnatal cardiac growth by 17β-estradiol through a β-catenin mechanism. Endocrinology 155(7):2667–2676

    Google Scholar 

  99. Grohé C et al (1997) Cardiac myocytes and fibroblasts contain functional estrogen receptors. FEBS Lett 416(1):107–112

    Google Scholar 

  100. Tobi EW et al (2009) DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. Hum Mol Genet 18(21):4046–4053

    Google Scholar 

  101. Tatsuguchi M et al (2007) Expression of microRNAs is dynamically regulated during cardiomyocyte hypertrophy. J Mol Cell Cardiol 42(6):1137–1141

    Google Scholar 

  102. Toischer K et al (2010) Differential cardiac remodeling in preload versus afterload. Circulation 122(10):993–1003

    Google Scholar 

  103. van Rooij E et al (2006) A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci U S A 103(48):18255–18260

    Google Scholar 

  104. de Jager T et al (2001) Mechanisms of estrogen receptor action in the myocardium. Rapid gene activation via the ERK1/2 pathway and serum response elements. J Biol Chem 276(30): 27873–27880

    Google Scholar 

  105. Deroo BJ, Korach KS (2006) Estrogen receptors and human disease. J Clin Invest 116(3):561–570

    Google Scholar 

  106. Murphy E (2011) Estrogen signaling and cardiovascular disease. Circ Res 109(6):687–696

    Google Scholar 

  107. St Pierre SR, Peirlinck M, Kuhl E (2022) Sex matters: a comprehensive comparison of female and male hearts. Front Physiol 13:831179

    Google Scholar 

  108. Ventura-Clapier R et al. (2020) Sexissues in cardiovascular diseases. Focus on energy metabolism. Biochim Biophys Acta Mol Basis Dis 1866(6):165722

    Google Scholar 

  109. Wittnich C et al (2013) Sex differences in myocardial metabolism and cardiac function: an emerging concept. Pflugers Arch 465(5):719–729

    Google Scholar 

  110. Regitz-Zagrosek V (2020) Sex and sexdifferences in heart failure. Int J Heart Failure 2(3):157–181

    Google Scholar 

  111. Brown RA et al (1996) Influence of sex, diabetes and ethanol on intrinsic contractile performance of isolated rat myocardium. Basic Res Cardiol 91(5):353–360

    Google Scholar 

  112. Curl CL, Wendt IR, Kotsanas G (2001) Effects of sexon intracellular. Pflugers Arch 441(5):709–716

    Google Scholar 

  113. Schwertz DW et al (2004) Sex differences in the response of rat heart ventricle to calcium. Biol Res Nurs 5(4):286–298

    Google Scholar 

  114. Ren J, Ceylan-Isik AF (2004) Diabetic cardiomyopathy: do women differ from men? Endocrine 25(2):73–83

    Google Scholar 

  115. Murphy E, Steenbergen C (2014) Estrogen regulation of protein expression and signaling pathways in the heart. Biol Sex Differ 5(1):6

    Google Scholar 

  116. Liu D et al (2008) Estrogen-enhanced gene expression of lipoprotein lipase in heart is antagonized by progesterone. Endocrinology 149(2):711–716

    Google Scholar 

  117. Hsieh YC et al (2005) PGC-1 upregulation via estrogen receptors: a common mechanism of salutary effects of estrogen and flutamide on heart function after trauma-hemorrhage. Am J Physiol Heart Circ Physiol 289(6):H2665–H2672

    Google Scholar 

  118. Ambrosi CM et al (2013) Sexdifferences in electrophysiological gene expression in failing and non-failing human hearts. PLoS ONE 8(1):e54635

    Google Scholar 

  119. Di Leva G et al (2013) Estrogen mediated-activation of miR-191/425 cluster modulates tumorigenicity of breast cancer cells depending on estrogen receptor status. PLoS Genet 9(3):e1003311

    Google Scholar 

  120. Lagranha CJ et al (2010) Sex differences in the phosphorylation of mitochondrial proteins result in reduced production of reactive oxygen species and cardioprotection in females. Circ Res 106(11):1681–1691

    Google Scholar 

  121. McKee LA et al (2013) Sexually dimorphic myofilament function and cardiac troponin I phosphospecies distribution in hypertrophic cardiomyopathy mice. Arch Biochem Biophys 535(1):39–48

    Google Scholar 

  122. Lin J et al (2009) Estrogen receptor-beta activation results in S-nitrosylation of proteins involved in cardioprotection. Circulation 120(3):245–254

    Google Scholar 

  123. Capasso JM et al (1983) Sex differences in myocardial contractility in the rat. Basic Res Cardiol 78(2):156–171

    Google Scholar 

  124. Schwertz DW et al (1999) Sexual dimorphism in rat left atrial function and response to adrenergic stimulation. Mol Cell Biochem 200(1–2):143–153

    Google Scholar 

  125. Saito T et al (2009) Estrogen contributes to sexdifferences in mouse ventricular repolarization. Circ Res 105(4):343–352

    Google Scholar 

  126. Lowe JS et al (2012) Increased late sodium current contributes to long QT-related arrhythmia susceptibility in female mice. Cardiovasc Res 95(3):300–307

    Google Scholar 

  127. Sims C et al (2008) Sex, age, and regional differences in L-type calcium current are important determinants of arrhythmia phenotype in rabbit hearts with drug-induced long QT type 2. Circ Res 102(9):e86-100

    Google Scholar 

  128. Johnson BD et al (1997) Increased expression of the cardiac L-type calcium channel in estrogen receptor-deficient mice. J Gen Physiol 110(2):135–140

    Google Scholar 

  129. Jiang C et al (1992) Effect of 17 beta-oestradiol on contraction, Ca2+ current and intracellular free Ca2+ in guinea-pig isolated cardiac myocytes. Br J Pharmacol 106(3):739–745

    Google Scholar 

  130. Meyer R et al (1998) Rapid modulation of L-type calcium current by acutely applied oestrogens in isolated cardiac myocytes from human, guinea-pig and rat. Exp Physiol 83(3):305–321

    Google Scholar 

  131. Belke DD, Swanson EA, Dillmann WH (2004) Decreased sarcoplasmic reticulum activity and contractility in diabetic db/db mouse heart. Diabetes 53(12):3201–3208

    Google Scholar 

  132. Leblanc N et al (1998) Age and sex differences in excitation-contraction coupling of the rat ventricle. J Physiol 511(Pt 2): 533–548

    Google Scholar 

  133. Shimoni Y, Liu XF (2003) Sex differences in the modulation of K+ currents in diabetic rat cardiac myocytes. J Physiol 550(Pt 2):401–412

    Google Scholar 

  134. Shimoni Y, Liu XF (2004) Sexdifferences in ANG II levels and action on multiple K+ current modulation pathways in diabetic rats. Am J Physiol Heart Circ Physiol 287(1):H311–H319

    Google Scholar 

  135. Yaras N et al (2007) Sex-related effects on diabetes-induced alterations in calcium release in the rat heart. Am J Physiol Heart Circ Physiol 293(6):H3584–H3592

    Google Scholar 

  136. Brown RA, Walsh MF, Ren J (2001) Influence of sex and diabetes on vascular and myocardial contractile function. Endocr Res 27(4):399–408

    Google Scholar 

  137. Durak A, Bitirim CV, Turan B (2020) Titin and CK2α are new intracellular targets in acute insulin application-associated benefits on electrophysiological parameters of left ventricular cardiomyocytes from insulin-resistant metabolic syndrome rats. Cardiovasc Drugs Ther 34(4):487–501

    Google Scholar 

  138. Fischer TH et al (2016) Sex-dependent alterations of Ca2+ cycling in human cardiac hypertrophy and heart failure. Europace 18(9):1440–1448

    Google Scholar 

Download references

Acknowledgements

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Belma Turan .

Editor information

Editors and Affiliations

Ethics declarations

Conflict of Interest

The author declares that there is no competing interests.

Ethical Declaration

The experimental protocol with rats was by the standards of the European Community guidelines on the care and use of laboratory animals and they have been approved by the local ethics committee of Ankara University (No: 2015–12-137).

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Turan, B. (2023). Cardiovascular Consequences of Metabolic Disturbances in Women. In: Kirshenbaum, L., Rabinovich-Nikitin, I. (eds) Biology of Women’s Heart Health. Advances in Biochemistry in Health and Disease, vol 26. Springer, Cham. https://doi.org/10.1007/978-3-031-39928-2_26

Download citation

Publish with us

Policies and ethics