Skip to main content

Aerial Manipulator Interaction with the Environment

  • Chapter
  • First Online:
Control of Autonomous Aerial Vehicles

Abstract

This chapter investigates the problem of an aerial manipulator interacting with the environment. The chapter is split into two parts. The former considers an aerial device with tilting propellers that, thanks to a super-twisting slide mode controller, can control the interaction force for inspection task purposes. The latter proposes a hardware-in-the-loop simulator for human cooperation and environmental interaction with an aerial manipulator. This part includes the mathematical background and theoretical derivation with insights into the relative stability proofs. Simulations in a highly realistic environment endowed with a physics engine and real experiments validate both the proposed approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://youtu.be/pJLFsVOek7M.

  2. 2.

    https://youtu.be/Ks261f6orMw.

  3. 3.

    https://github.com/prisma-lab/HIL_airmanip.

  4. 4.

    For additional details on the passivity concept, see [38, 39].

References

  1. Cacace J, Orozco-Soto SM, Suarez A, Caballero A, Orsag M, Bogdan S, Vasiljevic G, Ebeid E, Rodriguez JAA, Ollero A (2021) Safe local aerial manipulation for the installation of devices on power lines: aerial-core first year results and designs. Appl Sci 11(13):6220

    Article  Google Scholar 

  2. Ruggiero F, Lippiello V, Ollero A (2018) Aerial manipulation: a literature review. IEEE Robot Autom Lett 3(3):1957–1964

    Article  Google Scholar 

  3. Ollero A, Tognon M, Suarez A, Lee D, Franchi A (2022) Past, present, and future of aerial robotics manipulators. IEEE Trans Robot 38(1):626–645

    Article  Google Scholar 

  4. Kotarski D, Krznar M, Piljek P, Simunic N (2017) Experimental identification and characterization of multirotor UAV propulsion. J Phys Conf Ser 870:012003

    Article  Google Scholar 

  5. Goel A, Swarup A (2017) MIMO uncertain nonlinear system control via adaptive high-order super twisting sliding mode and its application to robotic manipulator. J Control Autom Electr Syst 28(1):36–49

    Article  Google Scholar 

  6. Shtessel YB, Moreno JA, Plestan F, Fridman LM, Poznyak AS (2010) Super-twisting adaptive sliding mode control: a Lyapunov design. In: Conference on decision and control. IEEE, pp 5109–5113

    Google Scholar 

  7. Alqaisi W, Kali Y, Ghommam J, Saad M, Nerguizian V (2020) Position and attitude tracking of uncertain quadrotor unmanned aerial vehicles based on non-singular terminal super-twisting algorithm. Proc Inst Mech Eng Part I J Syst Control Eng 234(3):396–408

    Google Scholar 

  8. Ghadiri H, Emami M, Khodadadi H (2021) Adaptive super-twisting non-singular terminal sliding mode control for tracking of quadrotor with bounded disturbances. Aerosp Sci Technol 112:106616

    Article  Google Scholar 

  9. Nguyen NP, Kim W, Moon J (2018) Observer-based super-twisting sliding mode control with fuzzy variable gains and its application to overactuated quadrotors. In: Conference on decision and control. IEEE, pp 5993–5998

    Google Scholar 

  10. Nguyen NP, Kim W, Moon J (2019) Super-twisting observer-based sliding mode control with fuzzy variable gains and its applications to fully-actuated hexarotors. J Franklin Inst 356(8):4270–4303

    Article  MathSciNet  MATH  Google Scholar 

  11. Ji R, Ma J, Ge SS, Ji R (2020) Adaptive second-order sliding mode control for a tilting quadcopter with input saturations. IFAC-PapersOnLine 53(2):3910–3915

    Article  Google Scholar 

  12. Yi S, Watanabe K, Nagai I (2021) Anti-disturbance control of a quadrotor manipulator with tiltable rotors based on integral sliding mode control. Artif Life Robot 1–10

    Google Scholar 

  13. Riache S, Kidouche M, Rezoug A (2019) Adaptive robust nonsingular terminal sliding mode design controller for quadrotor aerial manipulator. TELKOMNIKA Telecommun Comput Electron Control 17(3):1501–1512

    Google Scholar 

  14. Kuchwa-Dube C, Pedro JO (2018) Altitude and attitude tracking of a quadrotor-based aerial manipulator using super twisting sliding mode control. In: Proceedings of the 6th international conference on control, mechatronics and automation, pp 65–69

    Google Scholar 

  15. Kuchwa-Dube C, Pedro JO (2019) Quadrotor-based aerial manipulator altitude and attitude tracking using adaptive super-twisting sliding mode control. In: International conference on unmanned aircraft systems. IEEE, pp 144–151

    Google Scholar 

  16. Lippiello V, Ruggiero F (2012) Cartesian impedance control of a UAV with a robotic arm. In: International IFAC symposium on robot control, pp 704–709

    Google Scholar 

  17. Ruggiero F, Cacace J, Sadeghian H, Lippiello V (2014) Impedance control of VToL UAVs with a momentum-based external generalized forces estimator. In: IEEE international conference on robotics and automation, pp 2093–2099

    Google Scholar 

  18. Invernizzi D, Giurato M, Gattazzo P, Lovera M (2018) Full pose tracking for a tilt-arm quadrotor UAV. In: Conference on control technology and applications. IEEE, pp 159–164

    Google Scholar 

  19. Kamel M, Verling S, Elkhatib O, Sprecher C, Wulkop P, Taylor Z, Siegwart R, Gilitschenski I (2018) The voliro omniorientational hexacopter: an agile and maneuverable tiltable-rotor aerial vehicle. IEEE Robot Autom Mag 25(4):34–44

    Article  Google Scholar 

  20. Ryll M, Muscio G, Pierri F, Cataldi E, Antonelli G, Caccavale F, Bicego D, Franchi A (2019) 6d interaction control with aerial robots: the flying end-effector paradigm. Int J Robot Res 38(9):1045–1062

    Article  Google Scholar 

  21. Cacace J, Finzi A, Lippiello V, Furci M, Mimmo N, Marconi L (2016) A control architecture for multiple drones operated via multimodal interaction in search rescue mission. In: IEEE international symposium on safety, security, and rescue robotics, pp 233–239

    Google Scholar 

  22. Medeiros ACS, Ratsamee P, Uranishi Y, Mashita T, Takemura H (2020) Human-drone interaction: using pointing gesture to define a target object. In: Kurosu M (ed) Human-computer interaction. Multimodal and natural interaction. Springer, Cham, pp 688–705

    Google Scholar 

  23. Tezza D, Garcia S, Hossain T, Andujar M (2019) Brain eRacing: an exploratory study on virtual brain-controlled drones. In: Chen J, Fragomeni G (ed) Virtual, augmented and mixed reality. Applications and case studies (Lecture notes in computer science), vol 11575. Springer, Cham, pp 150–162

    Google Scholar 

  24. Cacace J, Finzi A, Lippiello V (2017) A robust multimodal fusion framework for command interpretation in human-robot cooperation. In: 2017 26th IEEE international symposium on robot and human interactive communication, pp 372–377

    Google Scholar 

  25. Jane LE, Ilene LE, Landay JA, Cauchard JR (2017) Drone & Wo: cultural influences on human-drone interaction techniques. In: CHI conference on human factors in computing systems, pp 6794–6799

    Google Scholar 

  26. Tezza D, Andujar M (2019) The state-of-the-art of human-drone interaction: a survey. IEEE Access, vol 7, pp 167 438–167 454

    Google Scholar 

  27. Selvaggio M, Cognetti M, Nikolaidis S, Ivaldi S, Siciliano B (2021) Autonomy in physical human-robot interaction: a brief survey. IEEE Robot Autom Lett 6(4):7989–7996

    Article  Google Scholar 

  28. Abtahi P, Zhao DY, E JL, Landay JA (2017) Drone near me: exploring touch-based human-drone interaction. Proc ACM Interactive Mobile Wearable Ubiquitous Technol 1(3)

    Google Scholar 

  29. Lieser M, Schwanecke U, Berdux J (2021) Tactile human-quadrotor interaction: Metrodrone. In: Proceedings of the fifteenth international conference on tangible, embedded, and embodied interaction, pp 1–6

    Google Scholar 

  30. Rajappa S, Bülthoff H, Stegagno P (2017) Design and implementation of a novel architecture for physical human-UAV interaction. Int J Robot Res 36(5–7):800–819

    Article  Google Scholar 

  31. Augugliaro F, D’Andrea R (2013) Admittance control for physical human-quadcopter interaction. In: European control conference, pp 1805–1810

    Google Scholar 

  32. Tognon M, Alami R, Siciliano B (2021) Physical human-robot interaction with a tethered aerial vehicle: application to a force-based human guiding problem. IEEE Trans Robot 1–12

    Google Scholar 

  33. Cuniato E, Cacace J, Selvaggio M, Ruggiero F, Lippiello V (2021) A hardware-in-the-loop simulator for physical human-aerial manipulator cooperation. In: International conference on advanced robotics

    Google Scholar 

  34. Furrer F, Burri M, Achtelik R, Aand Sigwart M (2016) RotorS—a modular Gazebo MAV simulator framework. In: Robot operating system (ROS). Studies in computational intelligence, vol 625. Springer, Cham

    Google Scholar 

  35. Madani T, Benallegue A (2006) Backstepping control for a quadrotor helicopter. In: International conference on intelligent robots and systems, pp 3255–3260

    Google Scholar 

  36. Murray R, Li Z, Sastry S (2017) A mathematical introduction to robotic manipulation. CRC Press, Boca Raton, FL

    Book  MATH  Google Scholar 

  37. Lee T, Leok M, McClamroch N (2010) Geometric tracking control of a quadrotor UAV on \({SE}(3)\). In: Conference on decision and control, pp 5420–5425

    Google Scholar 

  38. Slotine J, Li W (1987) On the adaptive control of robot manipulators. Int J Robot Res 6(3):49–59

    Article  Google Scholar 

  39. Berghuis H, Nijmeijer H (1993) A passivity approach to controller-observer design for robots. IEEE Trans Robot Autom 9:740–754

    Article  Google Scholar 

  40. Ferraguti F, Secchi C, Fantuzzi C (2013) A tank-based approach to impedance control with variable stiffness. In: IEEE international conference on robotics and automation, pp 4948–4953

    Google Scholar 

  41. Selvaggio M, Robuffo Giordano P, Ficuciello F, Siciliano B (2019) Passive task-prioritized shared-control teleoperation with haptic guidance. In: 2019 IEEE international conference on robotics and automation, pp 430–436

    Google Scholar 

  42. Ruggiero F, Trujillo M, Cano R, Ascorbe H, Viguria A, Peréz C, Lippiello V, Ollero A, Siciliano B (2015) A multilayer control for multirotor UAVs equipped with a servo robot arm. In: IEEE international conference on robotics and automation, pp 4014–4020

    Google Scholar 

  43. Khalil HK (2002) Nonlinear systems, 3rd edn. Prentice-Hall, Upper Saddle River, NJ

    MATH  Google Scholar 

  44. W. R. Inc. (2021) Mathematica, Version 12.3.1, Champaign, IL. [Online]. https://www.wolfram.com/mathematica

Download references

Acknowledgements

The research leading to these results has been supported by both the AERIAL-CORE project, European Union’s Horizon 2020 research and innovation program, under Grant Agreement No 871479, and the AERO-TRAIN project, European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 953454. The authors are solely responsible for its content.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Ruggiero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Orozco-Soto, S.M. et al. (2024). Aerial Manipulator Interaction with the Environment. In: L'Afflitto, A., Inalhan, G., Shin, HS. (eds) Control of Autonomous Aerial Vehicles. Advances in Industrial Control. Springer, Cham. https://doi.org/10.1007/978-3-031-39767-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39767-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39766-0

  • Online ISBN: 978-3-031-39767-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics