Skip to main content

Inflammation and Diabetes Mellitus

  • Chapter
  • First Online:
Obesity, Diabetes and Inflammation

Part of the book series: Contemporary Endocrinology ((COE))

  • 259 Accesses

Abstract

Diabetes is increasingly prevalent, and type 2 diabetes (T2D) accounts for the vast majority of cases of diabetes. Although insulitis, the presence of immune cells around the pancreatic islet cells, has traditionally been associated with type 1 diabetes (T1D), it is a phenomenon that is also observed in T2D. Inflammation is present in the pathogenesis of not only T1D and T2D but also immune checkpoint inhibitor induced-diabetes. In T2D, inflammation contributes to insulin resistance and is seen in organ systems, including adipose tissue (AT) and the liver. Both for T1D and T2D, therapies targeting inflammation have been and are currently being investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADA:

American Diabetes Association

APC:

Antigen-presenting cell

AT:

Adipose tissue

BMI:

Body mass index

CAA:

Serum amyloid A

CANTOS:

Canakinumab Anti-Inflammatory Thrombosis Outcomes Study

CCL:

Chemokine (C-C motif) ligand

CI:

Confidence interval

CRP:

C-reactive protein

CTLA4:

Cytotoxic T lymphocyte-associated protein 4

CVD:

Cardiovascular disease

CXCL:

Chemokine (C-X-C motif) ligand

DAISY:

Diabetes Autoimmunity Study in the Young

DEFEND:

Durable Response Therapy Evaluation for Early or New-Onset Type 1 Diabetes

DIPP:

Diabetes Prediction and Prevention study

EBV:

Epstein-Barr virus

FDA:

Food and Drug Administration

FFA:

Free fatty acid

GLP-1:

Glucagon-like peptide 1

GLP-1RA:

GLP-1 receptor agonist

GPR120:

G-coupled receptor 120

HbA1c:

Hemoglobin A1c

HFD:

High-fat diet

HLA:

Human leukocyte antigen

ICI:

Immune checkpoint inhibitors

IL:

Interleukin

MHC:

Major histocompatibility complex

MoBa:

Mother and Child Cohort study

NAFLD:

Non-alcoholic fatty liver disease

NASH:

Non-alcoholic steatohepatitis

NOD:

Non-obese diabetic mouse model

OGTT:

Oral glucose tolerance test

PD-1:

Programmed cell dead 1

PD-L1:

Programmed cell death ligand 1

PTPN22:

Protein tyrosine phosphatase non-receptor type 22

ROS:

Reactive oxygen species

sCD163:

Serum cluster of differentiation protein 163

SCFA:

Short-chain fatty acid

SGLT2:

Sodium-glucose co-transporter 2

T1D:

Type 1 diabetes

T2D:

Type 2 diabetes

TEDDY:

The Environmental Determinants of Diabetes in the Young

TNFα:

Tumor-necrosis factor α

UI:

Uncertainty interval

References

  1. American Diabetes Association professional practice committee. 2. Classification and diagnosis of diabetes: standards of medical care in diabetes—2022. Diabetes Care. 2021;45(Supplement_1):S17–38.

    Google Scholar 

  2. Eisenbarth GS, Type I. Diabetes Mellitus. N Engl J Med. 1986;314(21):1360–8.

    CAS  PubMed  Google Scholar 

  3. Insel RA, Dunne JL, Atkinson MA, Chiang JL, Dabelea D, Gottlieb PA, et al. Staging presymptomatic type 1 diabetes: a scientific statement of JDRF, the Endocrine Society, and the American Diabetes Association. Diabetes Care. 2015;38(10):1964–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Ziegler AG, Rewers M, Simell O, Simell T, Lempainen J, Steck A, et al. Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children. JAMA. 2013;309(23):2473–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Krischer JP, Lynch KF, Schatz DA, Ilonen J, Lernmark Å, Hagopian WA, et al. The 6 year incidence of diabetes-associated autoantibodies in genetically at-risk children: the TEDDY study. Diabetologia. 2015;58(5):980–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Kahn SE. The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of type 2 diabetes. Diabetologia. 2003;46(1):3–19.

    CAS  PubMed  Google Scholar 

  7. Ling C, Bacos K, Rönn T. Epigenetics of type 2 diabetes mellitus and weight change—a tool for precision medicine? Nat Rev Endocrinol. 2022;18(7):433–48.

    CAS  PubMed  Google Scholar 

  8. Stumvoll M, Tataranni PA, Stefan N, Vozarova B, Bogardus C. Glucose Allostasis. Diabetes. 2003;52(4):903–9.

    CAS  PubMed  Google Scholar 

  9. Stumvoll M, Goldstein BJ, van Haeften TW. Type 2 diabetes: principles of pathogenesis and therapy. Lancet. 2005;365(9467):1333–46.

    CAS  PubMed  Google Scholar 

  10. Dennis JM, Shields BM, Henley WE, Jones AG, Hattersley AT. Disease progression and treatment response in data-driven subgroups of type 2 diabetes compared with models based on simple clinical features: an analysis using clinical trial data. Lancet Diabetes Endocrinol. 2019;7(6):442–51.

    PubMed  PubMed Central  Google Scholar 

  11. Safiri S, Karamzad N, Kaufman JS, Bell AW, Nejadghaderi SA, Sullman MJM, et al. Prevalence, deaths and disability-adjusted-life-years (DALYs) due to type 2 diabetes and its attributable risk factors in 204 countries and territories, 1990–2019: results from the Global Burden of Disease Study 2019. Front Endocrinol. 2022;13:838027. https://doi.org/10.3389/fendo.2022.838027.

    Article  Google Scholar 

  12. Home, Resources, diabetes L with, Acknowledgement, FAQs, Contact, et al. IDF Diabetes Atlas | Tenth Edition [Internet]. [cited 2022 Nov 15]. https://diabetesatlas.org/

  13. Khan MAB, Hashim MJ, King JK, Govender RD, Mustafa H, Al KJ. Epidemiology of Type 2 diabetes—global burden of disease and forecasted trends. J Epidemiol Glob Health. 2020;10(1):107–11.

    PubMed  PubMed Central  Google Scholar 

  14. Viner R, White B, Christie D. Type 2 diabetes in adolescents: a severe phenotype posing major clinical challenges and public health burden. Lancet. 2017;389(10085):2252–60.

    PubMed  Google Scholar 

  15. Lin X, Xu Y, Pan X, Xu J, Ding Y, Sun X, et al. Global, regional, and national burden and trend of diabetes in 195 countries and territories: an analysis from 1990 to 2025. Sci Rep. 2020;10(1):14790.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2018;14(2):88–98.

    PubMed  Google Scholar 

  17. Abdullah A, Peeters A, de Courten M, Stoelwinder J. The magnitude of association between overweight and obesity and the risk of diabetes: a meta-analysis of prospective cohort studies. Diabetes Res Clin Pract. 2010;89(3):309–19.

    PubMed  Google Scholar 

  18. Adult-Onset Type 1 Diabetes: Current Understanding and Challenges | Diabetes Care | American Diabetes Association [Internet]. [cited 2022 Nov 28]. https://diabetesjournals.org/care/article/44/11/2449/138477/Adult-Onset-Type-1-Diabetes-Current-Understanding

  19. Patterson CC, Harjutsalo V, Rosenbauer J, Neu A, Cinek O, Skrivarhaug T, et al. Trends and cyclical variation in the incidence of childhood type 1 diabetes in 26 European centres in the 25 year period 1989–2013: a multicentre prospective registration study. Diabetologia. 2019;62(3):408–17.

    PubMed  Google Scholar 

  20. Norris JM, Johnson RK, Stene LC. Type 1 diabetes—early life origins and changing epidemiology. Lancet Diabetes Endocrinol. 2020;8(3):226–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Richardson SJ, Morgan NG. Enteroviral infections in the pathogenesis of type 1 diabetes: new insights for therapeutic intervention. Curr Opin Pharmacol. 2018;43:11–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Enterovirus Infection and Progression From Islet Autoimmunity to Type 1 Diabetes | Diabetes | American Diabetes Association [Internet]. [cited 2022 Nov 28]. https://diabetesjournals.org/diabetes/article/59/12/3174/26597/Enterovirus-Infection-and-Progression-From-Islet

  23. Roep BO. A viral link for type 1 diabetes. Nat Med. 2019;25(12):1816–8.

    CAS  PubMed  Google Scholar 

  24. Honeyman MC, Coulson BS, Stone NL, Gellert SA, Goldwater PN, Steele CE, et al. Association between rotavirus infection and pancreatic islet autoimmunity in children at risk of developing type 1 diabetes. Diabetes. 2000;49(8):1319–24.

    CAS  PubMed  Google Scholar 

  25. Perrett KP, Jachno K, Nolan TM, Harrison LC. Association of Rotavirus Vaccination with the incidence of type 1 diabetes in children. JAMA Pediatr. 2019;173(3):280–2.

    PubMed  PubMed Central  Google Scholar 

  26. Hiemstra HS, Schloot NC, van Veelen PA, Willemen SJM, Franken KLMC, van Rood JJ, et al. Cytomegalovirus in autoimmunity: T cell crossreactivity to viral antigen and autoantigen glutamic acid decarboxylase. Proc Natl Acad Sci. 2001;98(7):3988–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Kendall EK, Olaker VR, Kaelber DC, Xu R, Davis PB. Association of SARS-CoV-2 infection with new-onset Type 1 diabetes among pediatric patients from 2020 to 2021. JAMA Netw Open. 2022;5(9):e2233014.

    PubMed  PubMed Central  Google Scholar 

  28. Barrett CE. Risk for newly diagnosed diabetes 30 days after SARS-CoV-2 infection among persons aged 18 years — United States, March 1, 2020–June 28, 2021. MMWR Morb Mortal Wkly Rep. 2022;71:59–65. https://www.cdc.gov/mmwr/volumes/71/wr/mm7102e2.htm.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Lim S, Bae JH, Kwon HS, Nauck MA. COVID-19 and diabetes mellitus: from pathophysiology to clinical management. Nat Rev Endocrinol. 2021;17(1):11–30.

    CAS  PubMed  Google Scholar 

  30. Hakola L, Miettinen ME, Syrjälä E, Åkerlund M, Takkinen HM, Korhonen TE, et al. Association of cereal, gluten, and dietary fiber intake with islet autoimmunity and Type 1 diabetes. JAMA Pediatr. 2019;173(10):953–60.

    PubMed  PubMed Central  Google Scholar 

  31. Antvorskov JC, Halldorsson TI, Josefsen K, Svensson J, Granström C, Roep BO, et al. Association between maternal gluten intake and type 1 diabetes in offspring: national prospective cohort study in Denmark. BMJ. 2018;362:k3547.

    PubMed  PubMed Central  Google Scholar 

  32. Lund-Blix NA, Tapia G, Mårild K, Brantsaeter AL, Njølstad PR, Joner G, et al. Maternal and child gluten intake and association with type 1 diabetes: the Norwegian mother and child cohort study. PLoS Med. 2020;17(3):e1003032.

    PubMed  PubMed Central  Google Scholar 

  33. Lund-Blix NA, Dong F, Mårild K, Seifert J, Barón AE, Waugh KC, et al. Gluten intake and risk of islet autoimmunity and progression to Type 1 diabetes in children at increased risk of the disease: the diabetes autoimmunity study in the young (DAISY). Diabetes Care. 2019;42(5):789–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. de Goffau MC, Luopajärvi K, Knip M, Ilonen J, Ruohtula T, Härkönen T, et al. Fecal microbiota composition differs between children with β-cell autoimmunity and those without. Diabetes. 2013;62(4):1238–44.

    PubMed  PubMed Central  Google Scholar 

  35. Davis-Richardson AG, Ardissone AN, Dias R, Simell V, Leonard MT, Kemppainen KM, et al. Bacteroides dorei dominates gut microbiome prior to autoimmunity in Finnish children at high risk for type 1 diabetes. Front Microbiol. 2014;5:1. https://doi.org/10.3389/fmicb.2014.00678.

    Article  Google Scholar 

  36. Mejía-León ME, Petrosino JF, Ajami NJ, Domínguez-Bello MG, de la Barca AMC. Fecal microbiota imbalance in Mexican children with type 1 diabetes. Sci Rep. 2014;4(1):3814.

    PubMed  PubMed Central  Google Scholar 

  37. Endesfelder D, Engel M, Davis-Richardson AG, Ardissone AN, Achenbach P, Hummel S, et al. Towards a functional hypothesis relating anti-islet cell autoimmunity to the dietary impact on microbial communities and butyrate production. Microbiome. 2016;4(1):17.

    PubMed  PubMed Central  Google Scholar 

  38. Cleophas MCP, Ratter JM, Bekkering S, Quintin J, Schraa K, Stroes ES, et al. Effects of oral butyrate supplementation on inflammatory potential of circulating peripheral blood mononuclear cells in healthy and obese males. Sci Rep. 2019;9(1):775.

    PubMed  PubMed Central  Google Scholar 

  39. He J, Zhang P, Shen L, Niu L, Tan Y, Chen L, et al. Short-chain fatty acids and their association with Signalling pathways in inflammation, glucose and lipid metabolism. Int J Mol Sci. 2020;21(17):6356.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Vatanen T, Franzosa EA, Schwager R, Tripathi S, Arthur TD, Vehik K, et al. The human gut microbiome in early-onset type 1 diabetes from the TEDDY study. Nature. 2018;562(7728):589–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Mariño E, Richards JL, McLeod KH, Stanley D, Yap YA, Knight J, et al. Gut microbial metabolites limit the frequency of autoimmune T cells and protect against type 1 diabetes. Nat Immunol. 2017;18(5):552–62.

    PubMed  Google Scholar 

  42. Bell KJ, Saad S, Tillett BJ, McGuire HM, Bordbar S, Yap YA, et al. Metabolite-based dietary supplementation in human type 1 diabetes is associated with microbiota and immune modulation. Microbiome. 2022;10(1):9.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. de Groot PF, Nikolic T, Imangaliyev S, Bekkering S, Duinkerken G, Keij FM, et al. Oral butyrate does not affect innate immunity and islet autoimmunity in individuals with longstanding type 1 diabetes: a randomised controlled trial. Diabetologia. 2020;63(3):597–610.

    PubMed  Google Scholar 

  44. Toniolo A, Cassani G, Puggioni A, Rossi A, Colombo A, Onodera T, et al. The diabetes pandemic and associated infections: suggestions for clinical microbiology. Rev Med Microbiol. 2019;30(1):1–17.

    PubMed  Google Scholar 

  45. Voight BF, Scott LJ, Steinthorsdottir V, Morris AP, Dina C, Welch RP, et al. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet. 2010;42(7):579–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Fuchsberger C, Flannick J, Teslovich TM, Mahajan A, Agarwala V, Gaulton KJ, et al. The genetic architecture of type 2 diabetes. Nature. 2016;536(7614):41–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Noble JA. Immunogenetics of type 1 diabetes: a comprehensive review. J Autoimmun. 2015;64:101–12.

    CAS  PubMed  Google Scholar 

  48. Erlich H, Valdes AM, Noble J, Carlson JA, Varney M, Concannon P, et al. HLA DR-DQ haplotypes and genotypes and type 1 diabetes risk: analysis of the Type 1 diabetes genetics consortium families. Diabetes. 2008;57(4):1084–92.

    CAS  PubMed  Google Scholar 

  49. Awa WL, Boehm BO, Kapellen T, Rami B, Rupprath P, Marg W, et al. HLA-DR genotypes influence age at disease onset in children and juveniles with type 1 diabetes mellitus. Eur J Endocrinol. 2010;163(1):97–104.

    CAS  PubMed  Google Scholar 

  50. Caillat-Zucman S, Garchon HJ, Timsit J, Assan R, Boitard C, Djilali-Saiah I, et al. Age-dependent HLA genetic heterogeneity of type 1 insulin-dependent diabetes mellitus. J Clin Invest. 1992;90(6):2242–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Noble JA, Valdes AM, Varney MD, Carlson JA, Moonsamy P, Fear AL, et al. HLA class I and genetic susceptibility to Type 1 diabetes: results from the Type 1 diabetes genetics consortium. Diabetes. 2010;59(11):2972–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang J, Liu L, Ma J, Sun F, Zhao Z, Gu M. Common variants on cytotoxic T lymphocyte Antigen-4 polymorphisms contributes to Type 1 diabetes susceptibility: evidence based on 58 studies. PLoS One. 2014;9(1):e85982.

    PubMed  PubMed Central  Google Scholar 

  53. Bottini N, Musumeci L, Alonso A, Rahmouni S, Nika K, Rostamkhani M, et al. A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat Genet. 2004;36(4):337–8.

    CAS  PubMed  Google Scholar 

  54. Zheng W, She JX. Genetic association between a lymphoid tyrosine phosphatase (PTPN22) and Type 1 diabetes. Diabetes. 2005;54(3):906–8.

    CAS  PubMed  Google Scholar 

  55. Giza S, Goulas A, Gbandi E, Effraimidou S, Papadopoulou-Alataki E, Eboriadou M, et al. The role of PTPN22 C1858T gene polymorphism in diabetes mellitus Type 1: first evaluation in Greek children and adolescents. Biomed Res Int. 2013;2013:721604.

    PubMed  PubMed Central  Google Scholar 

  56. Steck A, Baschal E, Jasinski J, Boehm B, Bottini N, Concannon P, et al. rs2476601 T allele (R620W) defines high-risk PTPN22 type I diabetes-associated haplotypes with preliminary evidence for an additional protective haplotype. Genes Immun. 2009;10(Suppl 1):S21–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. DiMeglio LA, Evans-Molina C, Oram RA. Type 1 diabetes. Lancet. 2018;391(10138):2449–62.

    PubMed  PubMed Central  Google Scholar 

  58. Veld PI, De Munck N, Van Belle K, Buelens N, Ling Z, Weets I, et al. β-Cell replication is increased in donor organs from young patients after prolonged life support. Diabetes. 2010;59(7):1702–8.

    CAS  PubMed Central  Google Scholar 

  59. Morgan NG, Richardson SJ. Fifty years of pancreatic islet pathology in human type 1 diabetes: insights gained and progress made. Diabetologia. 2018;61(12):2499–506.

    PubMed  PubMed Central  Google Scholar 

  60. Morgan NG. Bringing the human pancreas into focus: new paradigms for the understanding of Type 1 diabetes. Diabet Med. 2017;34(7):879–86.

    CAS  PubMed  Google Scholar 

  61. Itoh N, Hanafusa T, Miyazaki A, Miyagawa J, Yamagata K, Yamamoto K, et al. Mononuclear cell infiltration and its relation to the expression of major histocompatibility complex antigens and adhesion molecules in pancreas biopsy specimens from newly diagnosed insulin-dependent diabetes mellitus patients. J Clin Invest. 1993;92(5):2313–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. In’t Veld P. Insulitis in human type 1 diabetes. Islets. 2011;3(4):131–8.

    PubMed  PubMed Central  Google Scholar 

  63. Ii DJK. Extent of beta cell destruction is important but insufficient to predict the onset of Type 1 diabetes mellitus. PLoS One. 2008;3(1):e1374.

    Google Scholar 

  64. Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nat Rev Immunol. 2011;11(2):98–107.

    CAS  PubMed  Google Scholar 

  65. Wu H, Ballantyne CM. Metabolic inflammation and insulin resistance in obesity. Circ Res. 2020;126(11):1549–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Hill DA, Lim HW, Kim YH, Ho WY, Foong YH, Nelson VL, et al. Distinct macrophage populations direct inflammatory versus physiological changes in adipose tissue. Proc Natl Acad Sci. 2018;115(22):E5096–105.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Nawaz A, Aminuddin A, Kado T, Takikawa A, Yamamoto S, Tsuneyama K, et al. CD206+ M2-like macrophages regulate systemic glucose metabolism by inhibiting proliferation of adipocyte progenitors. Nat Commun. 2017;8(1):1–16.

    CAS  Google Scholar 

  68. Oh YS, Bae GD, Baek DJ, Park EY, Jun HS. Fatty acid-induced lipotoxicity in pancreatic Beta-cells during development of Type 2 diabetes. Front Endocrinol. 2018;9:384.

    Google Scholar 

  69. Wang Y, Xie T, Zhang D, Leung PS. GPR120 protects lipotoxicity-induced pancreatic β-cell dysfunction through regulation of PDX1 expression and inhibition of islet inflammation. Clin Sci. 2019;133(1):101–16.

    CAS  Google Scholar 

  70. Maedler K, Sergeev P, Ris F, Oberholzer J, Joller-Jemelka HI, Spinas GA, et al. Glucose-induced β cell production of IL-1β contributes to glucotoxicity in human pancreatic islets. J Clin Invest. 2002;110(6):851–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Nishimura S, Manabe I, Nagasaki M, Eto K, Yamashita H, Ohsugi M, et al. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat Med. 2009;15(8):914–20.

    CAS  PubMed  Google Scholar 

  72. Muthiah M, Ng CH, Chan KE, Fu CE, Lim WH, Tan DJH, et al. Type 2 diabetes mellitus in metabolic-associated fatty liver disease vs. type 2 diabetes mellitus non-alcoholic fatty liver disease: a longitudinal cohort analysis. Ann Hepatol. 2023;28(1):100762.

    CAS  PubMed  Google Scholar 

  73. McNelis JC, Olefsky JM. Macrophages, immunity, and metabolic disease. Immunity. 2014;41(1):36–48.

    CAS  PubMed  Google Scholar 

  74. Kitade H, Chen G, Ni Y, Ota T. Nonalcoholic fatty liver disease and insulin resistance: new insights and potential new treatments. Nutrients. 2017;9(4):387.

    PubMed  PubMed Central  Google Scholar 

  75. Grinberg-Bleyer Y, Baeyens A, You S, Elhage R, Fourcade G, Gregoire S, et al. IL-2 reverses established type 1 diabetes in NOD mice by a local effect on pancreatic regulatory T cells. J Exp Med. 2010;207(9):1871–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Rosenzwajg M, Churlaud G, Mallone R, Six A, Derian N, Chaara W, et al. Low-dose interleukin-2 fosters a dose-dependent regulatory T cell tuned milieu in T1D patients. J Autoimmun. 2015;58:48–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Hartemann A, Bensimon G, Payan CA, Jacqueminet S, Bourron O, Nicolas N, et al. Low-dose interleukin 2 in patients with type 1 diabetes: a phase 1/2 randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 2013;1(4):295–305.

    CAS  PubMed  Google Scholar 

  78. Yang XD, Tisch R, Singer SM, Cao ZA, Liblau RS, Schreiber RD, et al. Effect of tumor necrosis factor alpha on insulin-dependent diabetes mellitus in NOD mice. I. the early development of autoimmunity and the diabetogenic process. J Exp Med. 1994;180(3):995–1004.

    CAS  PubMed  Google Scholar 

  79. Mastrandrea L, Yu J, Behrens T, Buchlis J, Albini C, Fourtner S, et al. Etanercept treatment in children with new-onset Type 1 diabetes: pilot randomized, placebo-controlled, double-blind study. Diabetes Care. 2009;32(7):1244–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Quattrin T, Haller MJ, Steck AK, Felner EI, Li Y, Xia Y, et al. Golimumab and Beta-cell function in youth with new-onset Type 1 diabetes. N Engl J Med. 2020;383(21):2007–17.

    CAS  PubMed  Google Scholar 

  81. Von HM, Bain SC, Bode B, Clausen JO, Coppieters K, Gaysina L, et al. Anti-interleukin-21 antibody and liraglutide for the preservation of β-cell function in adults with recent-onset type 1 diabetes: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Diabetes Endocrinol. 2021;9(4):212–24.

    Google Scholar 

  82. Lu J, Liu J, Li L, Lan Y, Liang Y. Cytokines in type 1 diabetes: mechanisms of action and immunotherapeutic targets. Clin Transl Immunol. 2020;9(3):e1122. https://doi.org/10.1002/cti2.1122.

    Article  Google Scholar 

  83. Atkinson MA, Roep BO, Posgai A, Wheeler DCS, Peakman M. The challenge of modulating β-cell autoimmunity in type 1 diabetes. Lancet Diabetes Endocrinol. 2019;7(1):52–64.

    CAS  PubMed  Google Scholar 

  84. Kotwal A, Haddox C, Block M, Kudva YC. Immune checkpoint inhibitors: an emerging cause of insulin-dependent diabetes. BMJ Open Diabetes Res Care. 2022;7(1):e000591. https://drc.bmj.com/content/7/1/e000591.

    Google Scholar 

  85. Tsang VHM, McGrath RT, Clifton-Bligh RJ, Scolyer RA, Jakrot V, Guminski AD, et al. Checkpoint inhibitor–associated autoimmune diabetes is distinct from type 1 diabetes. J Clin Endocrinol Metab. 2019;104(11):5499–506.

    PubMed  Google Scholar 

  86. Lo Preiato V, Salvagni S, Ricci C, Ardizzoni A, Pagotto U, Pelusi C. Diabetes mellitus induced by immune checkpoint inhibitors: type 1 diabetes variant or new clinical entity? Review of the literature. Rev Endocr Metab Disord. 2021;22(2):337–49.

    CAS  PubMed  Google Scholar 

  87. Zhang R, Cai XL, Liu L, Han XY, Ji LN. Type 1 diabetes induced by immune checkpoint inhibitors. Chin Med J. 2020;133(21):2595–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Chen X, Affinati AH, Lee Y, Turcu AF, Henry NL, Schiopu E, et al. Immune checkpoint inhibitors and risk of Type 1 diabetes. Diabetes Care. 2022;45(5):1170–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. ElSayed NA, Aleppo G, Aroda VR, Bannuru RR, Brown FM, Bruemmer D, et al. 9. Pharmacologic approaches to glycemic treatment: standards of care in diabetes—2023. Diabetes Care. 2022;46(Supplement_1):S140–57.

    PubMed Central  Google Scholar 

  90. Bailey CJ. Metformin: historical overview. Diabetologia. 2017;60(9):1566–76.

    CAS  PubMed  Google Scholar 

  91. Rena G, Pearson ER, Sakamoto K. Molecular mechanism of action of metformin: old or new insights? Diabetologia. 2013;56(9):1898–906.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Kristófi R, Eriksson JW. Metformin as an anti-inflammatory agent: a short review. J Endocrinol. 2021;251(2):R11–22.

    PubMed  Google Scholar 

  93. Li X, Li J, Wang L, Li A, Qiu Z, Wen QL, et al. The role of metformin and resveratrol in the prevention of hypoxia-inducible factor 1α accumulation and fibrosis in hypoxic adipose tissue. Br J Pharmacol. 2016;173(12):2001–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Ye J, Zhu N, Sun R, Liao W, Fan S, Shi F, et al. Metformin inhibits chemokine expression through the AMPK/NF-κB signaling pathway. J Interf Cytokine Res. 2018;38(9):363–9.

    CAS  Google Scholar 

  95. Mummidi S, Das NA, Carpenter AJ, Kandikattu H, Krenz M, Siebenlist U, et al. Metformin inhibits aldosterone-induced cardiac fibroblast activation, migration and proliferation in vitro, and reverses aldosterone+salt-induced cardiac fibrosis in vivo. J Mol Cell Cardiol. 2016;98:95–102.

    CAS  PubMed  Google Scholar 

  96. Sun Y, Li J, Xiao N, Wang M, Kou J, Qi L, et al. Pharmacological activation of AMPK ameliorates perivascular adipose/endothelial dysfunction in a manner interdependent on AMPK and SIRT1. Pharmacol Res. 2014;89:19–28.

    CAS  PubMed  Google Scholar 

  97. Byetta (exenatide) injection. :34.

    Google Scholar 

  98. GLP-1 receptor agonists in the treatment of type 2 diabetes—state-of-the-art-ScienceDirect [Internet]. [cited 2022 Nov 19]. https://www.sciencedirect.com/science/article/pii/S2212877820301769.

  99. Noyan-Ashraf MH, Shikatani EA, Schuiki I, Mukovozov I, Wu J, Li RK, et al. A glucagon-like Peptide-1 analog reverses the molecular pathology and cardiac dysfunction of a mouse model of obesity. Circulation. 2013;127(1):74–85.

    CAS  PubMed  Google Scholar 

  100. Chaudhuri A, Ghanim H, Vora M, Sia CL, Korzeniewski K, Dhindsa S, et al. Exenatide exerts a potent antiinflammatory effect. J Clin Endocrinol Metab. 2012;97(1):198–207.

    CAS  PubMed  Google Scholar 

  101. Hogan AE, Gaoatswe G, Lynch L, Corrigan MA, Woods C, O’Connell J, et al. Glucagon-like peptide 1 analogue therapy directly modulates innate immune-mediated inflammation in individuals with type 2 diabetes mellitus. Diabetologia. 2014;57(4):781–4.

    CAS  PubMed  Google Scholar 

  102. Cowie MR, Fisher M. SGLT2 inhibitors: mechanisms of cardiovascular benefit beyond glycaemic control. Nat Rev Cardiol. 2020;17(12):761–72.

    CAS  PubMed  Google Scholar 

  103. Trnovska J, Svoboda P, Pelantova H, Kuzma M, Kratochvilova H, Kasperova BJ, et al. Complex positive effects of SGLT-2 inhibitor Empagliflozin in the liver, kidney and adipose tissue of hereditary hypertriglyceridemic rats: possible contribution of attenuation of cell senescence and oxidative stress. Int J Mol Sci. 2021;22(19):10606.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Xu L, Nagata N, Nagashimada M, Zhuge F, Ni Y, Chen G, et al. SGLT2 inhibition by empagliflozin promotes fat utilization and browning and attenuates inflammation and insulin resistance by polarizing M2 macrophages in diet-induced obese mice. EBioMedicine. 2017;20:137–49.

    PubMed  PubMed Central  Google Scholar 

  105. Aragón-Herrera A, Moraña-Fernández S, Otero-Santiago M, Anido-Varela L, Campos-Toimil M, García-Seara J, et al. The lipidomic and inflammatory profiles of visceral and subcutaneous adipose tissues are distinctly regulated by the SGLT2 inhibitor empagliflozin in Zucker diabetic fatty rats. Biomed Pharmacother. 2023;161:114535.

    PubMed  Google Scholar 

  106. Díaz-Rodríguez E, Agra RM, Fernández ÁL, Adrio B, García-Caballero T, González-Juanatey JR, et al. Effects of dapagliflozin on human epicardial adipose tissue: modulation of insulin resistance, inflammatory chemokine production, and differentiation ability. Cardiovasc Res. 2018;114(2):336–46.

    PubMed  Google Scholar 

  107. Gohari S, Reshadmanesh T, Khodabandehloo H, Karbalaee-Hasani A, Ahangar H, Arsang-Jang S, et al. The effect of EMPAgliflozin on markers of inflammation in patients with concomitant type 2 diabetes mellitus and coronary artery disease: the EMPA-CARD randomized controlled trial. Diabetol Metab Syndr. 2022;14(1):170.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Feutren G, Assan R, Karsenty G, Rostu HD, Sirmai J, Papoz L, et al. Cyclosporin increases the rate and length of remissions in insulin-dependent diabetes of recent onset: results of a multicentre double-blind trial. Lancet. 1986;328(8499):119–24.

    Google Scholar 

  109. Filippo GD, Carel JC, Boitard C, Bougnères PF. Long-term results of early cyclosporin therapy in juvenile IDDM. Diabetes. 1996;45(1):101–4.

    PubMed  Google Scholar 

  110. Hagopian W, et al. Teplizumab preserves C-peptide in recent-onset type 1 diabetes: two-year results from the randomized, placebo-controlled Protégé trial. Diabetes. 2013;62(11):3901–8. https://doi.org/10.2337/db13-0236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Herold KC, et al. An anti-CD3 antibody, Teplizumab, in relatives at risk for Type 1 diabetes. N Engl J Med. 2019;381(7):603–13. https://doi.org/10.1056/NEJMoa1902226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Orban T, et al. Co-stimulation modulation with abatacept in patients with recent-onset type 1 diabetes: a randomised, double-blind, placebo-controlled trial. Lancet. 2011;378(9789):412–9. https://doi.org/10.1016/S0140-6736(11)60886-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ludvigsson J, Sumnik Z, Pelikanova T, et al. Intralymphatic glutamic acid decarboxylase with vitamin D supplementation in recent-onset Type 1 diabetes: a double-blind, randomized, placebo-controlled phase IIb trial. Diabetes Care. 2021;44(7):1604–12. https://doi.org/10.2337/dc21-0318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Quattrin T, et al. Golimumab and Beta-cell function in youth with new-onset type 1 diabetes. N Engl J Med. 2020;383(21):2007–17. https://doi.org/10.1056/NEJMoa2006136.

    Article  CAS  PubMed  Google Scholar 

  115. Sherry N, Hagopian W, Ludvigsson J, Jain SM, Wahlen J, Ferry RJ, et al. Teplizumab for treatment of type 1 diabetes (Protégé study): 1-year results from a randomised, placebo-controlled trial. Lancet. 2011;378(9790):487–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Hagopian W, Ferry RJ Jr, Sherry N, Carlin D, Bonvini E, Johnson S, et al. Teplizumab preserves C-peptide in recent-onset type 1 diabetes: two-year results from the randomized, placebo-controlled protégé trial. Diabetes. 2013;62(11):3901–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Herold KC, Bundy BN, Long SA, Bluestone JA, DiMeglio LA, Dufort MJ, et al. An anti-CD3 antibody, teplizumab, in relatives at risk for type 1 diabetes. N Engl J Med. 2019;381(7):603–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Provention Bio, Inc. A Multicenter, Multinational Extension of Study PRV-031-001 to evaluate the long-term safety of teplizumab (PRV-031), a humanized, FcR non-binding, anti-CD3 monoclonal antibody, in children and adolescents with recent-onset type 1 diabetes mellitus [Internet]. clinicaltrials.gov; 2022 Aug [cited 2022 Nov 28]. Report No.: NCT04598893. https://clinicaltrials.gov/ct2/show/NCT04598893.

  119. Herold KC, Hagopian W, Auger JA, Poumian-Ruiz E, Taylor L, Donaldson D, et al. Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus. N Engl J Med. 2002;346(22):1692–8.

    CAS  PubMed  Google Scholar 

  120. Keymeulen B, Vandemeulebroucke E, Ziegler AG, Mathieu C, Kaufman L, Hale G, et al. Insulin needs after CD3-antibody therapy in new-onset type 1 diabetes. N Engl J Med. 2005;352(25):2598–608.

    CAS  PubMed  Google Scholar 

  121. Keymeulen B, Walter M, Mathieu C, Kaufman L, Gorus F, Hilbrands R, et al. Four-year metabolic outcome of a randomised controlled CD3-antibody trial in recent-onset type 1 diabetic patients depends on their age and baseline residual beta cell mass. Diabetologia. 2010;53(4):614–23.

    CAS  PubMed  Google Scholar 

  122. Aronson R, Gottlieb PA, Christiansen JS, Donner TW, Bosi E, Bode BW, et al. Low-dose Otelixizumab anti-CD3 monoclonal antibody DEFEND-1 study: results of the randomized phase III study in recent-onset human type 1 diabetes. Diabetes Care. 2014;37(10):2746–54.

    PubMed  PubMed Central  Google Scholar 

  123. Ambery P, Donner TW, Biswas N, Donaldson J, Parkin J, Dayan CM. Efficacy and safety of low-dose otelixizumab anti-CD3 monoclonal antibody in preserving C-peptide secretion in adolescent type 1 diabetes: DEFEND-2, a randomized, placebo-controlled, double-blind, multi-Centre study. Diabet Med. 2014;31(4):399–402.

    CAS  PubMed  Google Scholar 

  124. Bluestone JA, Clair EWS, Turka LA. CTLA4Ig: bridging the basic immunology with clinical application. Immunity. 2006;24(3):233–8.

    CAS  PubMed  Google Scholar 

  125. Rachid O, Osman A, Abdi R, Haik Y. CTLA4-Ig (abatacept): a promising investigational drug for use in type 1 diabetes. Expert Opin Investig Drugs. 2020;29(3):221–36.

    CAS  PubMed  Google Scholar 

  126. Orban T, Bundy B, Becker DJ, DiMeglio LA, Gitelman SE, Goland R, et al. Co-stimulation modulation with Abatacept in patients with recent-onset Type 1 diabetes: a randomised double-masked controlled trial. Lancet. 2011;378(9789):412–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Orban T, Bundy B, Becker DJ, DiMeglio LA, Gitelman SE, Goland R, et al. Costimulation modulation with abatacept in patients with recent-onset Type 1 diabetes: follow-up 1 year after cessation of treatment. Diabetes Care. 2014;37(4):1069–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). CTLA4-Ig (Abatacept)for Prevention of Abnormal Glucose Tolerance and Diabetes in Relatives At -Risk for Type 1 Diabetes [Internet]. clinicaltrials.gov; 2022 Apr [cited 2023 Apr 20]. Report No.: NCT01773707. https://clinicaltrials.gov/ct2/show/NCT01773707

  129. Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 2017;377(12):1119–31.

    CAS  PubMed  Google Scholar 

  130. Verma S, Mathew V, Farkouh ME. Targeting inflammation in the prevention and treatment of type 2 diabetes: insights from CANTOS∗. J Am Coll Cardiol. 2018;71(21):2402–4.

    PubMed  Google Scholar 

  131. Larsen CM, Faulenbach M, Vaag A, Vølund A, Ehses JA, Seifert B, et al. Interleukin-1–receptor antagonist in Type 2 diabetes mellitus. N Engl J Med. 2007;356(15):1517–26.

    CAS  PubMed  Google Scholar 

  132. Sloan-Lancaster J, Abu-Raddad E, Polzer J, Miller JW, Scherer JC, De Gaetano A, et al. Double-blind, randomized study evaluating the glycemic and anti-inflammatory effects of subcutaneous LY2189102, a neutralizing IL-1β antibody, in patients with Type 2 diabetes. Diabetes Care. 2013;36(8):2239–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Del Valle DM, Kim-Schulze S, Huang HH, Beckmann ND, Nirenberg S, Wang B, et al. An inflammatory cytokine signature predicts COVID-19 severity and survival. Nat Med. 2020;26(10):1636–43.

    PubMed  PubMed Central  Google Scholar 

  134. Kim JH, Park K, Lee SB, Kang S, Park JS, Ahn CW, et al. Relationship between natural killer cell activity and glucose control in patients with type 2 diabetes and prediabetes. J Diabetes Investig. 2019 Sep;10(5):1223–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Owusu D, Rolfes MA, Arriola CS, Daily Kirley P, Alden NB, Meek J, et al. Rates of severe influenza-associated outcomes among older adults Living with diabetes—Influenza hospitalization surveillance network (FluSurv-NET), 2012–2017. Open Forum Infect Dis. 2022;9(5):ofac131.

    PubMed  PubMed Central  Google Scholar 

  136. Marshall RJ, Armart P, Hulme KD, Chew KY, Brown AC, Hansbro PM, et al. Glycemic variability in diabetes increases the severity of influenza. MBio. 2020;11(2):e02841–19.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudipa Sarkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lim, S., Sarkar, S., Ahima, R.S. (2023). Inflammation and Diabetes Mellitus. In: Avtanski, D., Poretsky, L. (eds) Obesity, Diabetes and Inflammation. Contemporary Endocrinology. Springer, Cham. https://doi.org/10.1007/978-3-031-39721-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39721-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39720-2

  • Online ISBN: 978-3-031-39721-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics