Skip to main content

Interval Valued Intuitionistic Fuzzy Z Extensions of AHP&CODAS: Comparison of Energy Storage Alternatives

  • Chapter
  • First Online:
Analytic Hierarchy Process with Fuzzy Sets Extensions

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 428))

  • 152 Accesses

Abstract

Energy storage technologies are receiving increasing attention due to the trend toward renewable energy sources. Energy storage systems are a promising technology as they provide the low carbon emissions needed in the future, contribute to renewable energy production, and offer an alternative to petroleum-derived fuels. It is not possible to say precisely how the energy will be stored, and often more than one method must be used together. In this study, battery technologies from electrochemical energy storage systems are discussed. This chapter proposes a multi-criteria decision-making (MCDM) model combining fuzzy IVIF-Z-AHP and fuzzy IVIF-Z-CODAS methods to choose the optimal battery ESS. The priority weights of 4 main and 11 sub-criteria related to energy storage efficiency are determined using the IVIF-Z-AHP method. After that, 5 different batteries are evaluated using the IVIF-Z-CODAS method, and the most appropriate battery ESS is selected by doing a performance evaluation regarding the storage of energy at maximum efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acar C, Beskese A, Temur GT (2019) A novel multicriteria sustainability investigation of energy storage systems. Int J Energy Res 43(12):6419–6441

    Article  Google Scholar 

  2. Albawab M, Ghenai C, Bettayeb M, Janajreh I (2020) Sustainability performance index for ranking energy storage technologies using multi-criteria decision-making model and hybrid computational method. J Energy Storage 32:101820

    Article  Google Scholar 

  3. Bolturk E, Kahraman C (2018) Interval-valued intuitionistic fuzzy CODAS method and its application to wave energy facility location selection problem. J Intell Fuzzy Syst 35(4):4865–4877

    Article  Google Scholar 

  4. Bulut M (2021) Batarya enerji depolama sistemlerinin teknolojik performanslarının ve doğal gaz kombine çevrim santrallarına entegrasyonunun değerlendirilmesi. Master's thesis, Fen Bilimleri Enstitüsü/Endüstri Mühendisliği Ana Bilim Dalı

    Google Scholar 

  5. Bulut M, Özcan E (2021) A novel approach towards evaluation of joint technology performances of battery energy storage system in a fuzzy environment. J Energy Storage 36:102361

    Article  Google Scholar 

  6. Çarkıt T (2016) Yük Besleme Maliyet Analizi Açısından Li-FePO4 Tabanlı Enerji Depolama Sistemi İle Dizel Elektrik Jeneratörünün Karşılaştırılması. Elektrik Mühendisliği Dergisi

    Google Scholar 

  7. Çarkıt T, Alçı M (2017) Batarya Teknolojilerinin Enerji Depolama Sistemleri İçerisindeki Yerinin İncelenmesi. 9. Yenilenebilir Enerji Kaynakları Sempozyumu

    Google Scholar 

  8. Chakrabarti MH, Hajimolana SA, Mjalli FS, Saleem M, Mustafa I (2013) Redox flow battery for energy storage. Arab J Sci Eng 38(4):723–739

    Article  Google Scholar 

  9. Çolak M, Kaya İ (2018) Sustaınabılıty assessment of energy storage alternatives through an integrated fuzzy-based mcdm methodology. UEMK 2018 BİLDİRİ ÖZETLERİ KİTABI 18–19 Ekim 2018 Hukuk Fakültesi, 654

    Google Scholar 

  10. Çolak M, Kaya İ (2020) Multi-criteria evaluation of energy storage technologies based on hesitant fuzzy information: a case study for Turkey. J Energy Storage 28:101211

    Article  Google Scholar 

  11. Dogan O, Deveci M, Canıtez F, Kahraman C (2019) A corridor selection for locating autonomous vehicles using an interval-valued intuitionistic fuzzy AHP and TOPSIS method. Soft Comput 1–17

    Google Scholar 

  12. Emeksiz C, Kara B (2022) Enerji Depolama Teknolojilerinin İncelenmesi ve Karşılaştırmalı Analizi. Int J Multidiscip Stud Innov Technol 6(2):134–142

    Google Scholar 

  13. Guo S (2020) Life cycle sustainability decision-making framework for the prioritization of electrochemical energy storage under uncertainties. In: Life cycle sustainability assessment for decision-making. Elsevier, pp 291–308

    Google Scholar 

  14. Kahraman C, Öztayşi B, Onar SC (2020) Warehouse location design using AS/RS technologies: an interval valued intuitionistic fuzzy AHP approach. In: Customer oriented product design. Springer, Cham, pp 379–397

    Google Scholar 

  15. Mishra AR, Tripathi DK, Cavallaro F, Rani P, Nigam SK, Mardani A (2022) Assessment of battery energy storage systems using the intuitionistic fuzzy removal effects of criteria and the measurement of alternatives and ranking based on compromise solution method. Energies 15(20):7782

    Article  Google Scholar 

  16. Narayanamoorthy S, Brainy JV, Shalwala RA, Alsenani TR, Ahmadian A, Kang D (2022) An enhanced fuzzy decision making approach for the assessment of sustainable energy storage systems. Sustain Energy Grids and Netw 100962

    Google Scholar 

  17. Özdoğan M (2010) Bir enerji depolama sisteminin tasarimi ve çalişma parametrelerinin deneysel ve sayisal olarak incelenmesi. Doctoral dissertation, DEÜ Fen Bilimleri Enstitüsü

    Google Scholar 

  18. Pamucar D, Deveci M, Schitea D, Erişkin L, Iordache M, Iordache I (2020) Developing a novel fuzzy neutrosophic numbers based decision making analysis for prioritizing the energy storage technologies. Int J Hydrogen Energy 45(43):23027–23047

    Article  Google Scholar 

  19. Sari IU, Kahraman C (2020) Intuitionistic fuzzy Z-numbers. In: International conference on intelligent and fuzzy systems. Springer, Cham, pp 1316–1324

    Google Scholar 

  20. Sergi D, Ucal Sari I (2023) Evaluation of learning management systems using interval valued intuitionistic fuzzy-Z numbers. Turkish Online J Distance Educ (in press)

    Google Scholar 

  21. Turan D, Yönetken A (2016) Enerji depolama sistemlerinin araştırılması ve analizi. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 16:113–121

    Google Scholar 

  22. Wagner L (2014) Overview of energy storage technologies. In: Future energy. Elsevier, pp 613–631

    Google Scholar 

  23. Zhang P, Ma F, Xiao X (2016) Thermal energy storage and retrieval characteristics of a molten-salt latent heat thermal energy storage system. Appl Energy 173:255–271

    Article  Google Scholar 

  24. Zhao H, Guo S, Zhao H (2018) Comprehensive performance assessment on various battery energy storage systems. Energies 11(10):2841

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irem Ucal Sari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ucal Sari, I., Sergi, D. (2023). Interval Valued Intuitionistic Fuzzy Z Extensions of AHP&CODAS: Comparison of Energy Storage Alternatives. In: Kahraman, C., Cebi, S. (eds) Analytic Hierarchy Process with Fuzzy Sets Extensions. Studies in Fuzziness and Soft Computing, vol 428. Springer, Cham. https://doi.org/10.1007/978-3-031-39438-6_7

Download citation

Publish with us

Policies and ethics