Skip to main content

Physically Verifying the First Nonzero Term in a Sequence: Physical ZKPs for ABC End View and Goishi Hiroi

  • Conference paper
  • First Online:
Frontiers of Algorithmics (IJTCS-FAW 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13933))

Included in the following conference series:

Abstract

In this paper, we develop a physical protocol to verify the first nonzero term of a sequence using a deck of cards. This protocol enables a prover to show a verifier the value of the first nonzero term in a given sequence without revealing which term it is. Our protocol uses \(\varTheta (1)\) shuffles, making it simpler and more practical than a similar protocol recently developed by Fukusawa and Manabe in 2022, which uses \(\varTheta (n)\) shuffles, where n is the length of the sequence. We also apply our protocol to construct zero-knowledge proof protocols for two famous logic puzzles: ABC End View and Goishi Hiroi. These zero-knowledge proof protocols allow a prover to physically show that he/she know solutions of the puzzles without revealing them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andersson, D.: HIROIMONO is NP-complete. In: Crescenzi, P., Prencipe, G., Pucci, G. (eds.) FUN 2007. LNCS, vol. 4475, pp. 30–39. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72914-3_5

    Chapter  Google Scholar 

  2. Bultel, X., Dreier, J., Dumas, J.-G., Lafourcade, P.: Physical zero-knowledge proofs for Akari, Takuzu, Kakuro and KenKen. In: Proceedings of the 8th International Conference on Fun with Algorithms (FUN), pp. 8:1–8:20 (2016)

    Google Scholar 

  3. Bultel, X., Dreier, J., Dumas, J.-G., Lafourcade, P., Miyahara, D., Mizuki, T., Nagao, A., Sasaki, T., Shinagawa, K., Sone, H.: Physical zero-knowledge proof for Makaro. In: Izumi, T., Kuznetsov, P. (eds.) SSS 2018. LNCS, vol. 11201, pp. 111–125. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03232-6_8

    Chapter  Google Scholar 

  4. Chien, Y.-F., Hon, W.-K.: Cryptographic and physical zero-knowledge proof: from Sudoku to Nonogram. In: Boldi, P., Gargano, L. (eds.) FUN 2010. LNCS, vol. 6099, pp. 102–112. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13122-6_12

    Chapter  Google Scholar 

  5. Dumas, J.-G., Lafourcade, P., Miyahara, D., Mizuki, T., Sasaki, T., Sone, H.: Interactive physical zero-knowledge proof for Norinori. In: Du, D.-Z., Duan, Z., Tian, C. (eds.) COCOON 2019. LNCS, vol. 11653, pp. 166–177. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26176-4_14

    Chapter  Google Scholar 

  6. Fukusawa, T., Manabe, Y.: Card-based zero-knowledge proof for the nearest neighbor property: zero-knowledge proof of ABC end view. In: Batina, L., Picek, S., Mondal, M. (eds.) SPACE 2022. LNCS, vol. 13783, pp. 147–161. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-22829-2_9

    Chapter  Google Scholar 

  7. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity and a methodology of cryptographic protocol design. J. ACM 38(3), 691–729 (1991)

    Article  MATH  Google Scholar 

  8. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gradwohl, R., Naor, M., Pinkas, B., Rothblum, G.N.: Cryptographic and physical zero-knowledge proof systems for solutions of Sudoku puzzles. Theory Comput. Syst. 44(2), 245–268 (2009). https://doi.org/10.1007/s00224-008-9119-9

    Article  MathSciNet  MATH  Google Scholar 

  10. Koch, A., Walzer, S.: Foundations for actively secure card-based cryptography. In: Proceedings of the 10th International Conference on Fun with Algorithms (FUN), pp. 17:1–17:23 (2020)

    Google Scholar 

  11. Lafourcade, P., Miyahara, D., Mizuki, T., Robert, L., Sasaki, T., Sone, H.: How to construct physical zero-knowledge proofs for puzzles with a “single loop" condition. Theor. Comput. Sci. 888, 41–55 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  12. Miyahara, D., et al.: Card-based ZKP protocols for Takuzu and Juosan. In: Proceedings of the 10th International Conference on Fun with Algorithms (FUN), pp. 20:1–20:21 (2020)

    Google Scholar 

  13. Miyahara, D., Sasaki, T., Mizuki, T., Sone, H.: Card-based physical zero-knowledge proof for Kakuro. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E102.A(9), 1072–1078 (2019)

    Google Scholar 

  14. Nikoli: Goishi Hiroi. https://www.nikoli.co.jp/ja/puzzles/goishi_hiroi/

  15. Robert, L., Miyahara, D., Lafourcade, P., Libralesso, L., Mizuki, T.: Physical zero-knowledge proof and NP-completeness proof of Suguru puzzle. Inf. Comput. 285(B), 104858 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  16. Robert, L., Miyahara, D., Lafourcade, P., Mizuki, T.: Card-based ZKP for connectivity: applications to Nurikabe, Hitori, and Heyawake. New Gener. Comput. 40(1), 149–171 (2022). https://doi.org/10.1007/s00354-022-00155-5

    Article  MATH  Google Scholar 

  17. Robert, L., Miyahara, D., Lafourcade, P., Mizuki, T.: Card-based ZKP protocol for Nurimisaki. In: Devismes, S., Petit, F., Altisen, K., Di Luna, G.A., Fernandez Anta, A. (eds.) SSS 2022. LNCS, vol. 13751, pp. 285–298. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-21017-4_19

    Chapter  Google Scholar 

  18. Robert, L., Miyahara, D., Lafourcade, P., Mizuki, T.: Hide a liar: card-based ZKP protocol for Usowan. In: Du, D.Z., Du, D., Wu, C., Xu, D. (eds.) TAMC 2022. LNCS, vol. 13571, pp. 201–217. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20350-3_17

    Chapter  Google Scholar 

  19. Ruangwises, S.: An improved physical ZKP for Nonogram. In: Du, D.-Z., Du, D., Wu, C., Xu, D. (eds.) COCOA 2021. LNCS, vol. 13135, pp. 262–272. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92681-6_22

    Chapter  Google Scholar 

  20. Ruangwises, S.: Physical zero-knowledge proof for ball sort puzzle. In: Della Vedova, G., Dundua, B., Lempp, S., Manea, F. (eds.) CiE 2023. LNCS, vol 13967, pp. 246–257. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-36978-0_20

  21. Ruangwises, S.: Two standard decks of playing cards are sufficient for a ZKP for Sudoku. New Gener. Comput. 40(1), 49–65 (2022). https://doi.org/10.1007/s00354-021-00146-y

    Article  MATH  Google Scholar 

  22. Ruangwises, S., Itoh, T.: How to physically verify a rectangle in a grid: a physical ZKP for Shikaku. In: Proceedings of the 11th International Conference on Fun with Algorithms (FUN), pp. 24:1–24:12 (2022)

    Google Scholar 

  23. Ruangwises, S., Itoh, T.: Physical zero-knowledge proof for numberlink puzzle and \(k\) vertex-disjoint paths problem. New Gener. Comput. 39(1), 3–17 (2021). https://doi.org/10.1007/s00354-020-00114-y

    Article  Google Scholar 

  24. Ruangwises, S., Itoh, T.: Physical zero-knowledge proof for ripple effect. Theor. Comput. Sci. 895, 115–123 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ruangwises, S., Itoh, T.: Physical ZKP for connected spanning subgraph: applications to bridges puzzle and other problems. In: Kostitsyna, I., Orponen, P. (eds.) UCNC 2021. LNCS, vol. 12984, pp. 149–163. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87993-8_10

    Chapter  MATH  Google Scholar 

  26. Ruangwises, S., Itoh, T.: Physical ZKP for Makaro using a standard deck of cards. In: Du, D.Z., Du, D., Wu, C., Xu, D. (eds.) TAMC 2022. LNCS, vol. 13571, pp. 43–54. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20350-3_5

    Chapter  MATH  Google Scholar 

  27. Sasaki, T., Miyahara, D., Mizuki, T., Sone, H.: Efficient card-based zero-knowledge proof for Sudoku. Theor. Comput. Sci. 839, 135–142 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  28. Shinagawa, K., et al.: Card-based protocols using regular polygon cards. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E100.A(9), 1900–1909 (2017)

    Google Scholar 

  29. Ueda, I., Miyahara, D., Nishimura, A., Hayashi, Y., Mizuki, T., Sone, H.: Secure implementations of a random bisection cut. Int. J. Inf. Secur. 19(4), 445–452 (2020). https://doi.org/10.1007/s10207-019-00463-w

    Article  Google Scholar 

Download references

Acknowledgement

The author would like to thank Daiki Miyahara and Kyosuke Hatsugai for a valuable discussion on this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suthee Ruangwises .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ruangwises, S. (2023). Physically Verifying the First Nonzero Term in a Sequence: Physical ZKPs for ABC End View and Goishi Hiroi. In: Li, M., Sun, X., Wu, X. (eds) Frontiers of Algorithmics. IJTCS-FAW 2023. Lecture Notes in Computer Science, vol 13933. Springer, Cham. https://doi.org/10.1007/978-3-031-39344-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39344-0_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39343-3

  • Online ISBN: 978-3-031-39344-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics