Skip to main content

Applications of the \(\Pi \)-Strategy When Players Move with Acceleration

  • Conference paper
  • First Online:
Proceedings of the IUTAM Symposium on Optimal Guidance and Control for Autonomous Systems 2023 (IUTAM 2023)

Abstract

In the present paper, we have carried out a fairly complete study of the pursuit problem when the players move by inertia, i.e. when the players carry out their movements with the help of acceleration vectors. The main tool for solving this pursuit problem is the parallel approach strategy (\(\Pi \)-strategy), which, under an arbitrary action of the evader, allows the best approach of the players. It is known that for the simple pursuit problem, the set of meeting points of the players is the ball of Apollonius. In the present paper, it is shown that in the case of inertial motions of players, the set of meeting points of the players is a linear combination of two such Apollonius balls, the first of which is built from the initial states, and the second from the initial states of the velocities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Isaacs, R.: Differential Games. Wiley, New York (1965)

    Google Scholar 

  2. Petrosjan, L.A.: Differential Games of Pursuit. Series on Optimization, Vol. 2. World Scientific Poblishing, Singapore (1993). https://doi.org/10.1114/1670

  3. Azamov, A.: On the quality problem for simple pursuit games with constraint. Publ. Sofia: Serdica Bulgariacae Math. 12(1), 38–43 (1986)

    MathSciNet  Google Scholar 

  4. Azamov, A.A., Samatov, B.T.: The \(\Pi \)-strategy: analogies and applications. Contrib. Game Theor. Manage. 4, 33–46 (2011)

    MathSciNet  Google Scholar 

  5. Sun, W., Tsiotras, P., Lolla, T., Subramani, D.N., Lermusiaux, P.F.J.: Multiple-pursuit/one-evader pursuit-evasion game in in dynamical flow fields. J. Guid. Control Dyn. 40(7), 1627–1637 (2017). https://doi.org/10.2514/1.G002125

    Article  Google Scholar 

  6. Garcia, E., Casbeer, D.W., Pachter, M.: Optimal strategies of the differential game in a circular region. IEEE Control Syst. Lett. 4(2), 492–497 (2019). https://doi.org/10.1109/LCSYS.2019.2963173

    Article  MathSciNet  Google Scholar 

  7. Liang, L., Deng, F., Peng, Z., Li, X., Zha, W.: A differential game for cooperative target defense. Automatica 102(April), 58–71 (2019). https://doi.org/10.1016/j.automatica.2018.12.034

    Article  MathSciNet  Google Scholar 

  8. Weintraub, I.E., Pachter, M., Garcia, E.: An introduction to pursuit–evasion differential games. In: American Control Conference (ACC), July 01–03 (2020). https://doi.org/10.23919/ACC45564.2020.9147205

  9. Dorothy, M., Maity, D., Shishika, D., Von Moll, A.: One Apollonius Circle is Enough for Many Pursuit-Evasion Games. https://doi.org/10.48550/arXiv.2111.09205

  10. Samatov, B.T., Horilov, M.A., Akbarov, AKh.: Differential game: “life line’’ for non-stationary geometric constraints on controls. Lobachevskii J. Math. 43(1), 237–248 (2022). https://doi.org/10.1134/S1995080222040187

    Article  MathSciNet  Google Scholar 

  11. Pshenichnii, B.N.: Simple pursuit by several objects. Cybern. Syst. Anal. 12(5), 484–485 (1976). https://doi.org/10.1007/BF01070036

    Article  Google Scholar 

  12. Satimov, NYu.: Methods of Solving the Pursuit Problems in the Theory of Differential Games. Izd-vo NBRUz, Tashkent (2019)

    Google Scholar 

  13. Samatov, B.T.: Problems of group pursuit with integral constraints on controls of the players II. Cybern. Syst. Anal. 49(6), 907–921 (2013). https://doi.org/10.1007/s10559-013-9581-5

    Article  MathSciNet  Google Scholar 

  14. Grigorenko, N.L.: Mathematical Methods of Control for Several Dynamic Processes. Izdat. Gos. Univ, Moscow (1990)

    Google Scholar 

  15. Chikrii, A.A.: Conflict-Controlled Processes. Kluwer Academic Publishers, Dordrecht (1997). https://doi.org/10.1007/978-94-017-1135-7

  16. Munts, N.V., Kumkov, S.S.: On the coincidence of the minimax solution and the value function in a time-optimal game with a lifeline. Proc. Steklov Inst. Math. 305, S125–S139 (2019). https://doi.org/10.1134/S0081543819040138

    Article  MathSciNet  Google Scholar 

  17. Samatov, B.T., Sotvoldiyev, A.I.: Intercept problem in dynamic flow field. Uzbek Math. J. 2, 103–112 (2019). https://doi.org/10.29229/uzmj.2019-2-12

    Article  MathSciNet  Google Scholar 

  18. Samatov, B.T., Ibragimov, G.I., Hodjibayeva, I.V.: Pursuit-evasion differential games with the Grönwall type constraints on controls. Ural Math. J. 6(2), 95–107 (2020). https://doi.org/10.15826/umj.2020.2.010

    Article  MathSciNet  Google Scholar 

  19. Samatov, B.T., Umaraliyeva, N.T., Uralova, S.I.: Differential games with the Langenhop type constraints on controls. Lobachevskii J. Math. 42(12), 2942–2951 (2021). https://doi.org/10.1134/S1995080221120295

    Article  MathSciNet  Google Scholar 

  20. Samatov, B.T.: The pursuit-evasion problem under integral-geometric constraints on pursuer controls. Autom. Remote Control 74(7), 1072–1081 (2013). https://doi.org/10.1134/S0005117913070023

    Article  MathSciNet  Google Scholar 

  21. Samatov, B.T.: The \(\Pi \)-strategy in a differential game with linear control constraints. J. Appl. Math. Mech. 78(3), 258–263 (2014). https://doi.org/10.1016/j.jappmathmech.2014.09.008

    Article  MathSciNet  Google Scholar 

  22. Bakolas, E.: Optimal guidance of the isotropic rocket in the presence of wind. J. Optim. Theor. Appl. 162(3), 954–974 (2014). https://doi.org/10.1007/s10957-013-0504-4

    Article  MathSciNet  Google Scholar 

  23. Samatov, B.T., Soyibboev, U.B.: Differential game with a lifeline for the inertial movements of players. Ural Math. J. 7(2), 94–109 (2021). https://doi.org/10.15826/umj.2021.2.007

    Article  MathSciNet  Google Scholar 

  24. Alekseev, V.M., Tikhomirov, V.M., Fomin, S.V.: Optimal’noye upravleniye [Optimal Control]. Nauka, Moscow (1979)

    Google Scholar 

  25. Blagodatskikh, V.I.: Introduction to Optimal Control (Linear Theory). Visshaya Shkola, Moscow (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahrom Samatov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Samatov, B., Soyibboev, U. (2024). Applications of the \(\Pi \)-Strategy When Players Move with Acceleration. In: Azimov, D. (eds) Proceedings of the IUTAM Symposium on Optimal Guidance and Control for Autonomous Systems 2023. IUTAM 2023. IUTAM Bookseries, vol 40. Springer, Cham. https://doi.org/10.1007/978-3-031-39303-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39303-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39302-0

  • Online ISBN: 978-3-031-39303-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics