Skip to main content

Ferroptosis: A Promising Therapeutic Target for Cardiovascular Diseases

  • Chapter
  • First Online:
Ferroptosis in Health and Disease

Abstract

Cardiovascular diseases (CVDs) refer to a group of conditions that affect the heart and blood vessels and are a leading cause of death worldwide. Ferroptosis is an iron-dependent regulated cell death process that occurs due to unlimited lipid peroxidation and subsequent plasma membrane rupture. Impaired ferroptosis has been linked to the pathophysiology of various CVDs, including cardiomyopathies, myocardial infarction and ischemia, coronary atherosclerosis, and heart failure. Excessive iron accumulation can trigger phospholipid hydroperoxide accumulation in the cell membrane and ferroptosis, ultimately causing CVD. Conversely, iron deficiency, which often develops under conditions of malnutrition, negatively affects cardiac metabolism and function in humans. This chapter delves into the role of ferroptosis in the pathophysiology of CVD and explores therapeutic targets and compounds for preventing ferroptosis-related CVD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahola S, Mejías PR, Hermans S, Chandragiri S, Giavalisco P, Nolte H, Langer T (2022) OMA1-mediated integrated stress response protects against ferroptosis in mitochondrial cardiomyopathy. Cell Metab 34(11):1875–1891.e1877

    Article  CAS  PubMed  Google Scholar 

  • Ajoolabady A, Aslkhodapasandhokmabad H, Libby P, Tuomilehto J, Lip GY, Penninger JM, Richardson DR, Tang D, Zhou H, Wang S (2021) Ferritinophagy and ferroptosis in the management of metabolic diseases. Trends Endocrinol Metab 32(7):444–462

    Article  CAS  PubMed  Google Scholar 

  • Baba Y, Higa JK, Shimada BK, Horiuchi KM, Suhara T, Kobayashi M, Woo JD, Aoyagi H, Marh KS, Kitaoka H (2018) Protective effects of the mechanistic target of rapamycin against excess iron and ferroptosis in cardiomyocytes. Am J Phys Heart Circ Phys 314(3):H659–H668

    Google Scholar 

  • Berdoukas V, Coates TD, Cabantchik ZI (2015) Iron and oxidative stress in cardiomyopathy in thalassemia. Free Radic Biol Med 88:3–9

    Article  CAS  PubMed  Google Scholar 

  • Bi Y, Ajoolabady A, Demillard LJ, Yu W, Hilaire ML, Zhang Y, Ren J (2021) Dysregulation of iron metabolism in cardiovascular diseases: from iron deficiency to iron overload. Biochem Pharmacol 190:114661

    Article  CAS  PubMed  Google Scholar 

  • Cao G, Yang C, Jin Z, Wei H, Xin C, Zheng C, Xu J, Huang Q, Zhang Z, Hu T (2022a) FNDC5/irisin reduces ferroptosis and improves mitochondrial dysfunction in hypoxic cardiomyocytes by Nrf2/HO-1 axis. Cell Biol Int 46(5):723–736

    Article  CAS  PubMed  Google Scholar 

  • Cao Y, Luo F, Peng J, Fang Z, Liu Q, Zhou S (2022b) KMT2B-dependent RFK transcription activates the TNF-α/NOX2 pathway and enhances ferroptosis caused by myocardial ischemia-reperfusion. J Mol Cell Cardiol 173:75–91

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Xu S, Zhao C, Liu B (2019) Role of TLR4/NADPH oxidase 4 pathway in promoting cell death through autophagy and ferroptosis during heart failure. Biochem Biophys Res Commun 516(1):37–43

    Article  CAS  PubMed  Google Scholar 

  • Chen H-Y, Xiao Z-Z, Ling X, Xu R-N, Zhu P, Zheng S-Y (2021) ELAVL1 is transcriptionally activated by FOXC1 and promotes ferroptosis in myocardial ischemia/reperfusion injury by regulating autophagy. Mol Med 27(1):1–14

    Article  Google Scholar 

  • Chen H, Zhu J, Le Y, Pan J, Liu Y, Liu Z, Wang C, Dou X, Lu D (2022a) Salidroside inhibits doxorubicin-induced cardiomyopathy by modulating a ferroptosis-dependent pathway. Phytomedicine 99:153964

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Cao Z, Gui F, Zhang M, Wu X, Peng H, Yu B, Li W, Ai F, Zhang J (2022b) TMEM43 protects against sepsis-induced cardiac injury via inhibiting ferroptosis in mice. Cells 11(19):2992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Del Re DP, Amgalan D, Linkermann A, Liu Q, Kitsis RN (2019) Fundamental mechanisms of regulated cell death and implications for heart disease. Physiol Rev 99(4):1765–1817

    Article  PubMed  PubMed Central  Google Scholar 

  • Fang X, Wang H, Han D, Xie E, Yang X, Wei J, Gu S, Gao F, Zhu N, Yin X (2019) Ferroptosis as a target for protection against cardiomyopathy. Proc Natl Acad Sci 116(7):2672–2680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang X, Cai Z, Wang H, Han D, Cheng Q, Zhang P, Gao F, Yu Y, Song Z, Wu Q (2020) Loss of cardiac ferritin H facilitates cardiomyopathy via Slc7a11-mediated ferroptosis. Circ Res 127(4):486–501

    Article  CAS  PubMed  Google Scholar 

  • Fernández-García V, González-Ramos S, Avendaño-Ortiz J, Martín-Sanz P, Delgado C, Castrillo A, Boscá L (2022) NOD1 splenic activation confers ferroptosis protection and reduces macrophage recruitment under pro-atherogenic conditions. Biomed Pharmacother 148:112769

    Article  PubMed  Google Scholar 

  • Fu F, Lai Q, Hu J, Zhang L, Zhu X, Kou J, Yu B, Li F (2022a) Ruscogenin alleviates myocardial ischemia-induced ferroptosis through the activation of BCAT1/BCAT2. Antioxidants 11(3):583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu F, Lai Q, Hu J, Zhang L, Zhu X, Kou J, Yu B, Li F (2022b) Ruscogenin alleviates myocardial ischemia-induced Ferroptosis through the activation of BCAT1/BCAT2. Antioxidants 11:583. S Note: MDPI stays neutral with regard to jurisdictional claims in published…

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao F, Zhao Y, Zhang B, Xiao C, Sun Z, Gao Y, Dou X (2022) Suppression of lncRNA Gm47283 attenuates myocardial infarction via miR-706/Ptgs2/ferroptosis axis. Bioengineered 13(4):10786–10802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He L, Liu Y-Y, Wang K, Li C, Zhang W, Li Z-Z, Huang X-Z, Xiong Y (2021) Tanshinone IIA protects human coronary artery endothelial cells from ferroptosis by activating the NRF2 pathway. Biochem Biophys Res Commun 575:1–7

    Article  CAS  PubMed  Google Scholar 

  • Hou K, Shen J, Yan J, Zhai C, Zhang J, Pan J-A, Zhang Y, Jiang Y, Wang Y, Lin RZ (2021) Loss of TRIM21 alleviates cardiotoxicity by suppressing ferroptosis induced by the chemotherapeutic agent doxorubicin. EBioMedicine 69:103456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitakata H, Endo J, Matsushima H, Yamamoto S, Ikura H, Hirai A, Koh S, Ichihara G, Hiraide T, Moriyama H (2021) MITOL/MARCH5 determines the susceptibility of cardiomyocytes to doxorubicin-induced ferroptosis by regulating GSH homeostasis. J Mol Cell Cardiol 161:116–129

    Article  CAS  PubMed  Google Scholar 

  • Kong C, Ni X, Wang Y, Zhang A, Zhang Y, Lin F, Li S, Lv Y, Zhu J, Yao X (2022) ICA69 aggravates ferroptosis causing septic cardiac dysfunction via STING trafficking. Cell Death Discov 8(1):1–13

    Article  PubMed  PubMed Central  Google Scholar 

  • Li L, Wang H, Zhang J, Chen X, Zhang Z, Li Q (2021) Effect of endothelial progenitor cell-derived extracellular vesicles on endothelial cell ferroptosis and atherosclerotic vascular endothelial injury. Cell Death Discov 7(1):1–11

    Article  Google Scholar 

  • Li D, Pi W, Sun Z, Liu X, Jiang J (2022a) Ferroptosis and its role in cardiomyopathy. Biomed Pharmacother 153:113279

    Article  CAS  PubMed  Google Scholar 

  • Li T, Tan Y, Ouyang S, He J, Liu L (2022b) Resveratrol protects against myocardial ischemia-reperfusion injury via attenuating ferroptosis. Gene 808:145968

    Article  CAS  PubMed  Google Scholar 

  • Lin J-H, Yang K-T, Lee W-S, Ting P-C, Luo Y-P, Lin D-J, Wang Y-S, Chang J-C (2022) Xanthohumol protects the rat myocardium against ischemia/reperfusion injury-induced ferroptosis. Oxid Med Cell Longev 2022

    Google Scholar 

  • Liu B, Zhao C, Li H, Chen X, Ding Y, Xu S (2018) Puerarin protects against heart failure induced by pressure overload through mitigation of ferroptosis. Biochem Biophys Res Commun 497(1):233–240

    Article  CAS  PubMed  Google Scholar 

  • Liu XJ, Lv YF, Cui WZ, Li Y, Liu Y, Xue YT, Dong F (2021) Icariin inhibits hypoxia/reoxygenation-induced ferroptosis of cardiomyocytes via regulation of the Nrf2/HO-1 signaling pathway. FEBS Open Bio 11(11):2966–2976

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu H, Mo H, Yang C, Mei X, Song X, Lu W, Xiao H, Yan J, Wang X, Yan J (2022a) A novel function of ATF3 in suppression of ferroptosis in mouse heart suffered ischemia/reperfusion. Free Radic Biol Med 189:122–135

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Östberg N, Yalcinkaya M, Dou H, Endo-Umeda K, Tang Y, Hou X, Xiao T, Fidler TP, Abramowicz S (2022b) Erythroid lineage Jak2 V617F expression promotes atherosclerosis through erythrophagocytosis and macrophage ferroptosis. J Clin Invest 132(13)

    Google Scholar 

  • Liu X, Chen C, Han D, Zhou W, Cui Y, Tang X, Xiao C, Wang Y, Gao Y (2022c) SLC7A11/GPX4 inactivation-mediated ferroptosis contributes to the pathogenesis of triptolide-induced cardiotoxicity. Oxidative Med Cell Longev 2022:1

    CAS  Google Scholar 

  • Liu X, Li D, Pi W, Wang B, Xu S, Yu L, Yao L, Sun Z, Jiang J, Mi Y (2022d) LCZ696 protects against doxorubicin-induced cardiotoxicity by inhibiting ferroptosis via AKT/SIRT3/SOD2 signaling pathway activation. Int Immunopharmacol 113:109379

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Qi K, Gong Y, Long X, Zhu S, Lu F, Lin K, Xu J (2022e) Ferulic acid alleviates myocardial ischemia reperfusion injury via upregulating AMPKα2 expression-mediated ferroptosis depression. J Cardiovasc Pharmacol 79(4):489–500

    Article  CAS  Google Scholar 

  • Lu H, Xiao H, Dai M, Xue Y, Zhao R (2022) Britanin relieves ferroptosis-mediated myocardial ischaemia/reperfusion damage by upregulating GPX4 through activation of AMPK/GSK3β/Nrf2 signalling. Pharm Biol 60(1):38–45

    Article  CAS  PubMed  Google Scholar 

  • Lv Z, Zhang X, Zhang X, Zhang J, Liu R (2021) Etomidate attenuates the ferroptosis in myocardial ischemia/reperfusion rat model via Nrf2/HO-1 pathway. Shock 56(3):440–449

    Article  CAS  PubMed  Google Scholar 

  • Ma S, He L-L, Zhang G-R, Zuo Q-J, Wang Z-L, Zhai J-L, Zhang T-T, Wang Y, Ma H-J, Guo Y-F (2022a) Canagliflozin mitigates ferroptosis and ameliorates heart failure in rats with preserved ejection fraction. Naunyn-Schmiedeb Arch Pharmacol 395:1–18

    Article  Google Scholar 

  • Ma X-H, Liu J-H-Z, Liu C-Y, Sun W-Y, Duan W-J, Wang G, Kurihara H, He R-R, Li Y-F, Chen Y (2022b) ALOX15-launched PUFA-phospholipids peroxidation increases the susceptibility of ferroptosis in ischemia-induced myocardial damage. Signal Transduct Target Ther 7(1):1–13

    Google Scholar 

  • Meng Z, Liang H, Zhao J, Gao J, Liu C, Ma X, Liu J, Liang B, Jiao X, Cao J (2021) HMOX1 upregulation promotes ferroptosis in diabetic atherosclerosis. Life Sci 284:119935

    Article  CAS  PubMed  Google Scholar 

  • Miao W, Chen M, Chen M, Cui C, Zhu Y, Luo X, Wu B (2022) Nr2f2 overexpression aggravates ferroptosis and mitochondrial dysfunction by regulating the PGC-1α signaling in diabetes-induced heart failure mice. Mediat Inflamm 2022:1

    Article  Google Scholar 

  • Ni T, Huang X, Pan S, Lu Z (2021) Inhibition of the long non-coding RNA ZFAS1 attenuates ferroptosis by sponging miR-150-5p and activates CCND2 against diabetic cardiomyopathy. J Cell Mol Med 25(21):9995–10007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ning D, Yang X, Wang T, Jiang Q, Yu J, Wang D (2021) Atorvastatin treatment ameliorates cardiac function and remodeling induced by isoproterenol attack through mitigation of ferroptosis. Biochem Biophys Res Commun 574:39–47

    Article  CAS  PubMed  Google Scholar 

  • Ouyang S, You J, Zhi C, Li P, Lin X, Tan X, Ma W, Li L, Xie W (2021) Ferroptosis: the potential value target in atherosclerosis. Cell Death Dis 12(8):782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozuynuk AS, Erkan AF, Coban N, Unaltuna N (2022) Examining the expression levels of ferroptosis-related genes in angiographically determined coronary artery disease patients. Mol Biol Rep:1–10

    Google Scholar 

  • Park T-J, Park JH, Lee GS, Lee J-Y, Shin JH, Kim MW, Kim YS, Kim J-Y, Oh K-J, Han B-S (2019) Quantitative proteomic analyses reveal that GPX4 downregulation during myocardial infarction contributes to ferroptosis in cardiomyocytes. Cell Death Dis 10(11):1–15

    Article  Google Scholar 

  • Pei Z, Liu Y, Liu S, Jin W, Luo Y, Sun M, Duan Y, Ajoolabady A, Sowers JR, Fang Y (2021) FUNDC1 insufficiency sensitizes high fat diet intake-induced cardiac remodeling and contractile anomaly through ACSL4-mediated ferroptosis. Metabolism 122:154840

    Article  CAS  PubMed  Google Scholar 

  • Peng H, Fu S, Wang S, Xu H, Dhanasekaran M, Chen H, Shao C, Chen Y, Ren J (2022) Ablation of FUNDC1-dependent mitophagy renders myocardium resistant to paraquat-induced ferroptosis and contractile dysfunction. Biochim Biophys Acta (BBA) Mol Basis Dis 1868(9):166448

    Article  CAS  Google Scholar 

  • Shen Y, Shen X, Wang S, Zhang Y, Wang Y, Ding Y, Shen J, Zhao J, Qin H, Xu Y (2022) Protective effects of Salvianolic acid B on rat ferroptosis in myocardial infarction through upregulating the Nrf2 signaling pathway. Int Immunopharmacol 112:109257

    Article  CAS  PubMed  Google Scholar 

  • Shi P, Song C, Qi H, Ren J, Ren P, Wu J, Xie Y, Zhang M, Sun H, Cao Y (2022) Up-regulation of IRF3 is required for docosahexaenoic acid suppressing ferroptosis of cardiac microvascular endothelial cells in cardiac hypertrophy rat. J Nutr Biochem 104:108972

    Article  CAS  PubMed  Google Scholar 

  • Song Y, Wang B, Zhu X, Hu J, Sun J, Xuan J, Ge Z (2021) Human umbilical cord blood–derived MSCs exosome attenuate myocardial injury by inhibiting ferroptosis in acute myocardial infarction mice. Cell Biol Toxicol 37(1):51–64

    Article  CAS  PubMed  Google Scholar 

  • Song C, Li D, Zhang J, Zhao X (2022) Role of ferroptosis in promoting cardiotoxicity induced by Imatinib Mesylate via down-regulating Nrf2 pathways in vitro and in vivo. Toxicol Appl Pharmacol 435:115852

    Article  CAS  PubMed  Google Scholar 

  • Stamenkovic A, O’Hara KA, Nelson DC, Maddaford TG, Edel AL, Maddaford G, Dibrov E, Aghanoori M, Kirshenbaum LA, Fernyhough P (2021) Oxidized phosphatidylcholines trigger ferroptosis in cardiomyocytes during ischemia-reperfusion injury. Am J Phys Heart Circ Phys 320(3):H1170–H1184

    CAS  Google Scholar 

  • Sun L, Wang H, Yu S, Zhang L, Jiang J, Zhou Q (2022a) Herceptin induces ferroptosis and mitochondrial dysfunction in H9c2 cells. Int J Mol Med 49(2):1–8

    PubMed  Google Scholar 

  • Sun X, Sun P, Zhen D, Xu X, Yang L, Fu D, Wei C, Niu X, Tian J, Li H (2022b) Melatonin alleviates doxorubicin-induced mitochondrial oxidative damage and ferroptosis in cardiomyocytes by regulating YAP expression. Toxicol Appl Pharmacol 437:115902

    Article  CAS  PubMed  Google Scholar 

  • Ta N, Qu C, Wu H, Zhang D, Sun T, Li Y, Wang J, Wang X, Tang T, Chen Q (2022) Mitochondrial outer membrane protein FUNDC2 promotes ferroptosis and contributes to doxorubicin-induced cardiomyopathy. Proc Natl Acad Sci 119(36):e2117396119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian H, Xiong Y, Zhang Y, Leng Y, Tao J, Li L, Qiu Z, Xia Z (2022) Activation of NRF2/FPN1 pathway attenuates myocardial ischemia–reperfusion injury in diabetic rats by regulating iron homeostasis and ferroptosis. Cell Stress Chaperones 27(2):149–164

    Article  CAS  PubMed Central  Google Scholar 

  • Wang J, Deng B, Liu Q, Huang Y, Chen W, Li J, Zhou Z, Zhang L, Liang B, He J (2020) Pyroptosis and ferroptosis induced by mixed lineage kinase 3 (MLK3) signaling in cardiomyocytes are essential for myocardial fibrosis in response to pressure overload. Cell Death Dis 11(7):1–19

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang N, Ma H, Li J, Meng C, Zou J, Wang H, Liu K, Liu M, Xiao X, Zhang H (2021) HSF1 functions as a key defender against palmitic acid-induced ferroptosis in cardiomyocytes. J Mol Cell Cardiol 150:65–76

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Kuang X, Yin Y, Han N, Chang L, Wang H, Hou Y, Li H, Li Z, Liu Y (2022a) Tongxinluo prevents chronic obstructive pulmonary disease complicated with atherosclerosis by inhibiting ferroptosis and protecting against pulmonary microvascular barrier dysfunction. Biomed Pharmacother 145:112367

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Yan S, Liu X, Deng F, Wang P, Yang L, Hu L, Huang K, He J (2022b) PRMT4 promotes ferroptosis to aggravate doxorubicin-induced cardiomyopathy via inhibition of the Nrf2/GPX4 pathway. Cell Death Differ:1–14

    Google Scholar 

  • Wei Z, Shaohuan Q, Pinfang K, Chao S (2022) Curcumin attenuates ferroptosis-induced myocardial injury in diabetic cardiomyopathy through the Nrf2 pathway. Cardiovasc Ther 2022:1

    Article  Google Scholar 

  • Wu X, Li Y, Zhang S, Zhou X (2021) Ferroptosis as a novel therapeutic target for cardiovascular disease. Theranostics 11(7):3052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang K, Song H, Yin D (2021) PDSS2 inhibits the ferroptosis of vascular endothelial cells in atherosclerosis by activating Nrf2. J Cardiovasc Pharmacol 77(6):767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang K-T, Chao T-H, Wang I-C, Luo Y-P, Ting P-C, Lin J-H, Chang J-C (2022a) Berberine protects cardiac cells against ferroptosis. Tzu Chi Med J 34(3):310

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang X, Kawasaki NK, Min J, Matsui T, Wang F (2022b) Ferroptosis in heart failure. J Mol Cell Cardiol 173:141

    Article  CAS  PubMed  Google Scholar 

  • Yarmohammadi F, Hayes AW, Karimi G (2021) The role of ferroptosis in organ toxicity. Hum Exp Toxicol 40(12_suppl):S851–S860

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Wang Z, Liu Z, Du K, Lu X (2021) Protective effects of dexazoxane on rat ferroptosis in doxorubicin-induced cardiomyopathy through regulating HMGB1. Front Cardiovasc Med 8

    Google Scholar 

  • Zhang J-K, Zhang Z, Guo Z-A, Fu Y, Chen X-J, Chen W-J, Wu H-F, Cui X-J (2022a) The BMSC-derived exosomal lncRNA Mir9-3hg suppresses cardiomyocyte ferroptosis in ischemia-reperfusion mice via the Pum2/PRDX6 axis. Nutr Metab Cardiovasc Dis 32(2):515–527

    Article  CAS  PubMed  Google Scholar 

  • Zhang M-W, Li X-T, Zhang Z-Z, Liu Y, Song J-W, Liu X-M, Chen Y-H, Wang N, Guo Y, Liang L-R (2022b) Elabela blunts doxorubicin-induced oxidative stress and ferroptosis in rat aortic adventitial fibroblasts by activating the KLF15/GPX4 signaling. Cell Stress Chaperones:1–13

    Google Scholar 

  • Zhang X, Zheng C, Gao Z, Chen H, Li K, Wang L, Zheng Y, Li C, Zhang H, Gong M (2022c) SLC7A11/xCT prevents cardiac hypertrophy by inhibiting ferroptosis. Cardiovasc Drugs Ther 36(3):437–447

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Tang J, Song J, Xie M, Liu Y, Dong Z, Liu X, Li X, Zhang M, Chen Y (2022d) Elabela alleviates ferroptosis, myocardial remodeling, fibrosis and heart dysfunction in hypertensive mice by modulating the IL-6/STAT3/GPX4 signaling. Free Radic Biol Med 181:130–142

    Article  CAS  PubMed  Google Scholar 

  • Zhao W-k, Zhou Y, Xu T-T, Wu Q (2021) Ferroptosis: opportunities and challenges in myocardial ischemia-reperfusion injury. Oxidative Med Cell Longev 2021:1

    Google Scholar 

  • Zhao X, Si L, Bian J, Pan C, Guo W, Qin P, Zhu W, Xia Y, Zhang Q, Wei K (2022) Adipose tissue macrophage-derived exosomes induce ferroptosis via glutathione synthesis inhibition by targeting SLC7A11 in obesity-induced cardiac injury. Free Radic Biol Med 182:232–245

    Article  CAS  PubMed  Google Scholar 

  • Zheng H, Shi L, Tong C, Liu Y, Hou M (2021) circSnx12 is involved in ferroptosis during heart failure by targeting miR-224-5p. Front Cardiovasc Med:318

    Google Scholar 

  • Zhou X, Zhuo M, Zhang Y, Shi E, Ma X, Li H (2021) miR-190a-5p regulates cardiomyocytes response to ferroptosis via directly targeting GLS2. Biochem Biophys Res Commun 566:9–15

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Wang X, Zhu B, Ding S, Shi H, Yang X (2022) Disruption of histamine/H1R-STAT3-SLC7A11 axis exacerbates doxorubicin-induced cardiac ferroptosis. Free Radic Biol Med 192:98–114

    Article  CAS  PubMed  Google Scholar 

  • Zhuang S, Ma Y, Zeng Y, Lu C, Yang F, Jiang N, Ge J, Ju H, Zhong C, Wang J (2021) METTL14 promotes doxorubicin-induced cardiomyocyte ferroptosis by regulating the KCNQ1OT1-miR-7-5p-TFRC axis. Cell Biol Toxicol:1–21

    Google Scholar 

Download references

Conflict of Interest Statement

None of the authors declare any conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Klionsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ajoolabady, A., Pratico, D., Henninger, N., Tuomilehto, J., Klionsky, D.J., Ren, J. (2023). Ferroptosis: A Promising Therapeutic Target for Cardiovascular Diseases. In: Tang, D. (eds) Ferroptosis in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-031-39171-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39171-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39170-5

  • Online ISBN: 978-3-031-39171-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics