Skip to main content

Abstract

Influenza, a contagious respiratory illness, spreads easily via contaminated surfaces and air. In majority of the cases, the symptoms are minor, including fever, fatigue, chills, and runny nose. In very few cases, it can lead to severe complications, specifically in people with underlying health conditions, older persons, and children. Vaccines have proven to be the most effective way to prevent and control the spread of influenza. Vaccination can reduce illness and lessen severity of infection. However, current challenges to effective influenza vaccination include a need for annual vaccination, constant mutations to the circulating strains, emergence of antigenically novel vaccines, a need of adjuvants for improving the immunogenicity in immunologically weaker population, and less cross-protected immune responses. Here, we summarize the conventional and modern technologies used for the production of antigens for immunizations. Additionally, we have reviewed the use of various adaptive pathways, like use of adjuvants and mRNA technology, and tracked their progress in clinical trials. This chapter focuses majorly on currently licensed influenza vaccines, the potential challenges that arise because of influenza virus biology, and the vaccine approaches that address these challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhu W, et al. Promising adjuvants and platforms for influenza vaccine development. Pharmaceutics. 2021;13(1):68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Centers for Diseases Control and Prevention: 2021–2022 U.S. Flu season: preliminary in-season burden estimates. October 4, 2022 [cited 2023 20 February]; Available from: https://www.cdc.gov/flu/about/burden/2021-2022.htm.

  3. Centers for Diseases Control and Prevention. How to prevent flu. August 31, 2022 [cited 2023 February 20]; Available from: https://www.cdc.gov/flu/prevent/prevention.htm.

  4. Herold S, Sander L-E. Toward a universal flu vaccine. J Sci. 2020;367(6480):852–3.

    CAS  Google Scholar 

  5. Kim H, Webster RG, Webby RJ. Influenza virus: dealing with a drifting and shifting pathogen. Viral Immunol. 2018;31(2):174–83.

    Article  CAS  PubMed  Google Scholar 

  6. Deviatkin AA, et al. Universal flu mRNA vaccine: promises, prospects, and problems. Vaccine. 2022;10(5):709.

    Article  CAS  Google Scholar 

  7. Centers for Disease Control and Prevention. Types of influenza viruses. December 2, 2022 [cited 2023 February 20]; Available from: https://www.cdc.gov/flu/about/viruses/types.htm.

  8. Buonsanti C, D’Oro U. Discovery of immune potentiators as vaccine adjuvants. In: Immunopotentiators in modern vaccines. Elsevier; 2017. p. 85–104.

    Chapter  Google Scholar 

  9. Rappuoli R, et al. Vaccines, new opportunities for a new society. Proc Natl Acad Sci. 2014;111(34):12288–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shah RR, Hassett KJ, Brito LA. Overview of vaccine adjuvants: introduction, history, and current status. Methods Mol Biol. 2017;1494:1–13.

    Article  CAS  PubMed  Google Scholar 

  11. Centers for Disease Control and Prevention. Seasonal influenza vaccine safety: a summary for clinicians. September 14, 2022 [cited 2023 February 20, 2023]; Available from: https://www.cdc.gov/flu/professionals/vaccination/vaccine_safety.htm.

  12. Omidi Y, et al. Nanoscale vaccines: design, delivery, and applications. In: Nanoengineering of biomaterials; 2022. p. 437–68, Wiley Online Library.

    Google Scholar 

  13. Kisby T, Yilmazer A, Kostarelos K. Reasons for success and lessons learnt from nanoscale vaccines against COVID-19. Nat Nanotechnol. 2021;16(8):843–50.

    Article  CAS  PubMed  Google Scholar 

  14. Greenberg H, Kemble G. Live attenuated influenza vaccine. In: Influenza vaccines for the future. Birkhauser: Springer; 2011. p. 273–91.

    Chapter  Google Scholar 

  15. Carter NJ, Curran MP. Live attenuated influenza vaccine (FluMist®; Fluenz™): a review of its use in the prevention of seasonal influenza in children and adults. Drugs. 2011;71(12):1591–622.

    Article  CAS  PubMed  Google Scholar 

  16. Belshe RB, et al. Correlates of immune protection induced by live, attenuated, cold-adapted, trivalent, intranasal influenza virus vaccine. J Infect Dis. 2000;181(3):1133–7.

    Article  CAS  PubMed  Google Scholar 

  17. Subbarao K. Live attenuated cold-adapted influenza vaccines. Cold Spring Harb Perspect Med. 2021;11(9):a038653.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bergen R, et al. Safety of cold-adapted live attenuated influenza vaccine in a large cohort of children and adolescents. Pediatr Infect Dis J. 2004;23(2):138–44.

    Article  PubMed  Google Scholar 

  19. Mendelman PM, et al. Live attenuated influenza vaccine induces cross-reactive antibody responses in children against an A/Fujian/411/2002-like H3N2 antigenic variant strain. Pediatr Infect Dis J. 2004;23(11):1053–5.

    Article  PubMed  Google Scholar 

  20. Sridhar S, Brokstad KA, Cox RJ. Influenza vaccination strategies: comparing inactivated and live attenuated influenza vaccines. Vaccines (Basel). 2015;3(2):373–89.

    Article  CAS  PubMed  Google Scholar 

  21. Dormitzer PR. Cell culture-derived influenza vaccines. In: Rappuoli R, Del Giudice G, editors. Influenza vaccines for the future. Basel: Springer; 2011. p. 293–312.

    Chapter  Google Scholar 

  22. Lee M-S, et al. Measuring antibody responses to a live attenuated influenza vaccine in children. Pediatr Infect Dis J. 2004;23(9):852–6.

    Article  PubMed  Google Scholar 

  23. Rajaram S, et al. Influenza vaccines: the potential benefits of cell-culture isolation and manufacturing. Ther Adv Vaccin Immunother. 2020;8:2515135520908121.

    CAS  Google Scholar 

  24. Krietsch Boerner L. The flu shot and the egg. ACS Cent Sci. 2020;6(2):89–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pérez Rubio A, Eiros JM. Cell culture-derived flu vaccine: present and future. Hum Vaccin Immunother. 2018;14(8):1874–82.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kim YH, et al. Influenza vaccines: past, present, and future. Rev Med Virol. 2022;32(1):e2243.

    Article  PubMed  Google Scholar 

  27. Tan JW, Joshi P. Egg allergy: an update. J Paediatr Child Health. 2014;50(1):11–5.

    Article  PubMed  Google Scholar 

  28. Flu Vaccine and People with Egg Allergies. August 25, 2022 [cited 2023 February 28]; Available from: https://www.cdc.gov/flu/prevent/egg-allergies.htm.

  29. Montomoli E, et al. Cell culture-derived influenza vaccines from Vero cells: a new horizon for vaccine production. Expert Rev Vaccines. 2012;11:587–94.

    Article  CAS  PubMed  Google Scholar 

  30. Lamb YN. Cell-based quadrivalent inactivated influenza virus vaccine (Flucelvax® Tetra/Flucelvax Quadrivalent®): a review in the prevention of influenza. Drugs. 2019;79(12):1337–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Barr IG, et al. Cell culture-derived influenza vaccines in the severe 2017–2018 epidemic season: a step towards improved influenza vaccine effectiveness. NPJ Vaccines. 2018;3(1):1–5.

    Article  Google Scholar 

  32. Dawood FS, et al. Comparison of the immunogenicity of cell culture-based and recombinant quadrivalent influenza vaccines to conventional egg-based quadrivalent influenza vaccines among healthcare personnel aged 18–64 years: a randomized open-label trial. Clin Infect Dis. 2021;73(11):1973–81.

    Article  CAS  PubMed  Google Scholar 

  33. Doroshenko A, Halperin SA. Trivalent MDCK cell culture-derived influenza vaccine Optaflu (Novartis Vaccines). Expert Rev Vaccines. 2009;8(6):679–88.

    Article  CAS  PubMed  Google Scholar 

  34. Chan CY-Y, Tambyah PA. Preflucel®: a Vero-cell culture-derived trivalent influenza vaccine. Expert Rev Vaccines. 2012;11(7):759–73.

    Article  PubMed  Google Scholar 

  35. Mathew NR, Angeletti D. Recombinant influenza vaccines: saviors to overcome immunodominance. Front Immunol. 2020;10:2997.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Cox MM, et al. Safety, efficacy, and immunogenicity of Flublok in the prevention of seasonal influenza in adults. Ther Adv Vaccin. 2015;3(4):97–108.

    Article  CAS  Google Scholar 

  37. Cox MMJ, Patriarca PA, Treanor J. FluBlok, a recombinant hemagglutinin influenza vaccine. Influenza Other Respir Viruses. 2008;2(6):211–9.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Arunachalam AB, Post P, Rudin D. Unique features of a recombinant haemagglutinin influenza vaccine that influence vaccine performance. NPJ Vaccines. 2021;6(1):144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sedova ES, et al. Recombinant influenza vaccines. Acta Nat. 2012;4(4):17–27.

    Article  CAS  Google Scholar 

  40. O’Hagan DT, et al. “World in motion” – emulsion adjuvants rising to meet the pandemic challenges. NPJ Vaccines. 2021;6(1):158.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lodaya RN, et al. Overview of vaccine adjuvants. In: Practical aspects of vaccine development. Elsevier; 2022. p. 9–25.

    Google Scholar 

  42. Tregoning JS, Russell RF, Kinnear E. Adjuvanted influenza vaccines. Hum Vaccin Immunother. 2018;14(3):550–64.

    Article  PubMed  PubMed Central  Google Scholar 

  43. McKee AS, Marrack P. Old and new adjuvants. Curr Opin Immunol. 2017;47:44–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tsai TF. Fluad®-MF59®-adjuvanted influenza vaccine in older adults. Infect Chemother. 2013;45(2):159–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Influenza A (H5N1) Virus Monovalent Vaccine, Adjuvanted. [cited 2022 December 20]; Available from: https://www.fda.gov/vaccines-blood-biologics/vaccines/influenza-h5n1-virus-monovalent-vaccine-adjuvanted.

  46. 10 Reasons to Get Vaccinated 2021 March 2021 [cited 2021 October 19]; Available from: https://www.nfid.org/immunization/10-reasons-to-get-vaccinated/.

    Google Scholar 

  47. Carter NJ, Plosker GL. Prepandemic Influenza Vaccine H5n1 (Split Virion, Inactivated, Adjuvanted) [Prepandrix™]. BioDrugs. 2008;22(5):279–92.

    Google Scholar 

  48. O’Hagan DT, et al. Towards an evidence based approach for the development of adjuvanted vaccines. Curr Opin Immunol. 2017;47:93–102.

    Article  PubMed  Google Scholar 

  49. Kim K-H, et al. Alum adjuvant enhances protection against respiratory syncytial virus but exacerbates pulmonary inflammation by modulating multiple innate and adaptive immune cells. PLoS One. 2015;10(10):e0139916.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Hutchison S, et al. Antigen depot is not required for alum adjuvanticity. FASEB J. 2012;26(3):1272–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Awate S, Babiuk LA, Mutwiri G. Mechanisms of action of adjuvants. Front Immunol. 2013;4:114.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Sokolovska A, Hem SL, HogenEsch H. Activation of dendritic cells and induction of CD4+ T cell differentiation by aluminum-containing adjuvants. Vaccine. 2007;25(23):4575–85.

    Article  CAS  PubMed  Google Scholar 

  53. Eisenbarth SC, et al. Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature. 2008;453(7198):1122–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ghimire TR, et al. Alum increases antigen uptake, reduces antigen degradation and sustains antigen presentation by DCs in vitro. Immunol Lett. 2012;147(1-2):55–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Vajo Z, et al. Dose sparing and the lack of a dose-response relationship with an influenza vaccine in adult and elderly patients - a randomized, double-blind clinical trial. Br J Clin Pharmacol. 2017;83(9):1912–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Knudsen NP, et al. Different human vaccine adjuvants promote distinct antigen-independent immunological signatures tailored to different pathogens. Sci Rep. 2016;6:19570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Shah RR, et al. The development of self-emulsifying oil-in-water emulsion adjuvant and an evaluation of the impact of droplet size on performance. J Pharm Sci. 2015;104(4):1352–61.

    Article  CAS  PubMed  Google Scholar 

  58. Lodaya RN, et al. Formulation design, optimization and in vivo evaluations of an α-tocopherol-containing self-emulsified adjuvant system using inactivated influenza vaccine. J Control Release. 2019;316:12–21.

    Article  CAS  PubMed  Google Scholar 

  59. Fang JH, et al. The adjuvant MF59: a 10-year perspective. In: Vaccine adjuvants. Springer; 2000. p. 211–28.

    Google Scholar 

  60. Knuf M, et al. Safety and immunogenicity of an MF59-adjuvanted A/H1N1 pandemic influenza vaccine in children from three to seventeen years of age. Vaccine. 2015;33(1):174–81.

    Article  CAS  PubMed  Google Scholar 

  61. Cohet C, et al. Safety of AS03-adjuvanted influenza vaccines: a review of the evidence. Vaccine. 2019;37(23):3006–21.

    Article  CAS  PubMed  Google Scholar 

  62. Mendes A, Azevedo-Silva J, Fernandes JC. From sharks to yeasts: squalene in the development of vaccine adjuvants. Pharmaceuticals. 2022;15(3):265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Klucker MF, et al. AF03, an alternative squalene emulsion-based vaccine adjuvant prepared by a phase inversion temperature method. J Pharm Sci. 2012;101(12):4490–500.

    Article  PubMed  Google Scholar 

  64. Bolhassani A. Lipid-based delivery systems in development of genetic and subunit vaccines. Mol Biotechnol. 2022:1–30.

    Google Scholar 

  65. Shinde V, et al. Comparison of the safety and immunogenicity of a novel Matrix-M-adjuvanted nanoparticle influenza vaccine with a quadrivalent seasonal influenza vaccine in older adults: a phase 3 randomised controlled trial. Lancet Infect Dis. 2022;22(1):73–84.

    Article  CAS  PubMed  Google Scholar 

  66. Lewis DJ, et al. Transient facial nerve paralysis (Bell’s palsy) following intranasal delivery of a genetically detoxified mutant of Escherichia coli heat labile toxin. PLoS One. 2009;4(9):e6999.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Kasturi SP, et al. Programming the magnitude and persistence of antibody responses with innate immunity. Nature. 2011;470(7335):543–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Meurens F. Flu RNA vaccine: A game changer? Vaccines (Basel). 2020;8(4):760.

    Article  PubMed  Google Scholar 

  69. Zeng C, et al. Formulation and delivery technologies for mRNA vaccines. In: Yu D, Petsch B, editors. mRNA vaccines. Cham: Springer International Publishing; 2022. p. 71–110.

    Google Scholar 

  70. Chaudhary N, Weissman D, Whitehead KA. mRNA vaccines for infectious diseases: principles, delivery and clinical translation. Nat Rev Drug Discov. 2021;20(11):817–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Brito LA, et al. Self-amplifying mRNA vaccines. Adv Genet. 2015;89:179–233.

    Article  CAS  PubMed  Google Scholar 

  72. Overmars I, et al. mRNA vaccines: a transformative technology with applications beyond COVID-19. Med J Aust. 2022;217(2):71–5.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Thomas S, et al. Artificial intelligence in vaccine and drug design. In: Vaccine design. Springer; 2022. p. 131–46.

    Google Scholar 

  74. Liu B, et al. Development and application of an uncapped mRNA platform. bioRxiv. 2022.

    Google Scholar 

  75. Pardi N, et al. mRNA vaccines—a new era in vaccinology. Nat Rev Drug Discov. 2018;17(4):261–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Safety and immunogenicity of quadrivalent influenza mRNA vaccine MRT5413 in adult participants18 years of age and older. 2023 [cited 2023 March 10]; Available from: https://clinicaltrials.gov/ct2/show/NCT05650554.

  77. Safety and immunogenicity of quadrivalent influenza mRNA vaccine MRT5410 in adult participants 18 years of age and older. 2023 [cited 2023 March 20]; Available from: https://www.clinicaltrials.gov/ct2/show/NCT05624606?cond=%22Influenza%2C+Human%22&spons=Sanofi&phase=0&draw=2&rank=9.

  78. Safety and immunogenicity of quadrivalent influenza mRNA vaccine MRT5407 in adult participants18 years of age and older. 2023; Available from: https://www.clinicaltrials.gov/ct2/show/NCT05553301?cond=%22Influenza%2C+Human%22&spons=Sanofi&phase=0&draw=2&rank=10.

  79. Dolgin E. mRNA flu shots move into trials. Nat Rev Drug Discov. 2021;20(11):801–3.

    Article  CAS  PubMed  Google Scholar 

  80. Carascal MB, Pavon RDN, Rivera WL. Recent progress in recombinant influenza vaccine development toward heterosubtypic immune response. Front Immunol. 2022;13:878943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. A study to evaluate the safety, tolerability, and immunogenicity of a modified RNA vaccine against influenza. 2023; Available from: https://clinicaltrials.gov/ct2/show/NCT05052697

  82. A study to evaluate a modified RNA vaccine against influenza in adults 18 years of age or older. 2023 [cited 2023 March 20]; Available from: https://www.clinicaltrials.gov/ct2/show/study/NCT05540522.

  83. Kumar A, et al. The mRNA vaccine development landscape for infectious diseases. Nat Rev Drug Discov. 2022;21(5):333–4.

    Article  CAS  PubMed  Google Scholar 

  84. A study to evaluate the safety, reactogenicity and immunogenicity of vaccine CVSQIV in healthy adults. 2023 [cited 2023 March 20]; Available from: https://www.clinicaltrials.gov/ct2/show/NCT05252338?term=NCT05252338&draw=2&rank=1.

  85. Safety, tolerability, and immunogenicity of VAL-339851 in healthy adult subjects. 2023 [cited 2023 March 20]; Available from: https://clinicaltrials.gov/ct2/show/NCT03345043?term=NCT03345043&draw=2&rank=1.

  86. Feldman RA, et al. mRNA vaccines against H10N8 and H7N9 influenza viruses of pandemic potential are immunogenic and well tolerated in healthy adults in phase 1 randomized clinical trials. Vaccine. 2019;37(25):3326–34.

    Article  CAS  PubMed  Google Scholar 

  87. Safety, tolerability, and immunogenicity of VAL-506440 in healthy adult subjects. 2022 [cited 2023 March 23]; Available from: https://clinicaltrials.gov/ct2/show/NCT03076385?term=VAL-506440&draw=2&rank=1.

  88. A study of mRNA-1010 seasonal influenza vaccine in healthy adults. 2022 [cited 2022 December 20]; Available from: https://clinicaltrials.gov/ct2/show/NCT04956575?term=ModernaTX%2C+Inc.&cond=Influenza&draw=3&rank=1.

  89. A study of mRNA-1010 seasonal influenza vaccine in adults. 2023 [cited 2023 March 19]; Available from: https://clinicaltrials.gov/ct2/show/NCT05415462?term=ModernaTX%2C+Inc.&cond=Influenza&draw=3&rank=4.

  90. Study of mRNA-1020 and mRNA-1030 seasonal influenza vaccines in healthy adults. 2022 [cited 2022 December 30]; Available from: https://clinicaltrials.gov/ct2/show/NCT05333289?term=ModernaTX%2C+Inc.&cond=Influenza&draw=3&rank=2.

  91. Maroof A, et al. Intranasal vaccination promotes detrimental Th17-mediated immunity against influenza infection. PLoS Pathog. 2014;10(1):e1003875.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Ka O. How nasal-spray vaccines could change the pandemic. Nature. 2022;609(7926):240–2.

    Article  Google Scholar 

  93. Wang J, et al. Pulmonary surfactant–biomimetic nanoparticles potentiate heterosubtypic influenza immunity. J Sci. 2020;367(6480):eaau0810.

    CAS  Google Scholar 

  94. Lin X, et al. Oil-in-ionic liquid nanoemulsion-based intranasal delivery system for influenza split-virus vaccine. J Control Release. 2022;346:380–91.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflicts of interest

Shashank Bhangde is a doctoral student at the Northeastern University, Boston, MA, who participates in a postgraduate studentship program at GSK.

Rushit Lodaya is an employee of the GSK group of companies.

Trademark statements: FluMist was a trademark of Medimmune LLC. Flucelvax, Flucelvax quadrivalent, Optaflu, Celtura, Fluad, Audenz are trademarks of Seqirus UK Limited. Flublok is a trademark of Protein Sciences Corporation. Celvapan, Preflucel are trademarks of Ology Bioservices Inc. Humenza is a trademark of Sanofi Pasteur. Inflexal is a trademark of Janssen Vaccines AG. Orniflu is a trademark of Microgen. Panflu is a trademark of Sinovac.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansoor M. Amiji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhangde, S., Lodaya, R.N., Amiji, M.M. (2023). Nanoscale Vaccines for Influenza. In: Patravale, V.B., Date, A.A., Jindal, A.B. (eds) Nanomedicines for the Prevention and Treatment of Infectious Diseases. AAPS Advances in the Pharmaceutical Sciences Series, vol 56. Springer, Cham. https://doi.org/10.1007/978-3-031-39020-3_11

Download citation

Publish with us

Policies and ethics