Skip to main content

Nanocarriers for Delivery of Peptide Antibiotics

  • Chapter
  • First Online:
Nanomedicines for the Prevention and Treatment of Infectious Diseases

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 56))

  • 205 Accesses

Abstract

Bacterial infections pose a major threat to public health due to continuous bacterial growth and their resistance to conventional antibiotics. The recent increase in cases of antibiotic resistance and the failure of conventional antibiotics have created an urgent need to overcome this barrier. This fact urged the discovery of new therapeutic alternatives for the eradication of bacterial infections. Antibacterial peptides (ABPs) have emerged as a functional key tool in the management of bacterial infections. ABPs possess a wide spectrum of antimicrobial activity and are vital components of the innate immune system, which can pose a minimal risk of developing resistance. Although ABP has a broad range of therapeutic applications, its utility is limited due to concerns such as stability, manufacturing process, and associated toxicity. Nanocarriers have the potential to overcome all these shortcomings associated with different ABPs, and therefore, ABP-based nanocarriers present a novel approach for efficient treatment against bacterial infections. In this chapter, the importance of different nanocarriers in ABP delivery is discussed. Further, the various applications of nanocarriers and limitations of nanocarrier-based peptide antibiotics are also addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABPs:

Antibacterial peptides

ABSSSI:

Acute bacterial skin and skin structure infections

ADA:

Adamantane

AMF:

Alternating magnetic field

AMPs:

Antimicrobial peptides

AMR:

Antimicrobial resistance

CAMP:

Cationic antimicrobial peptide

CFDA:

China Food and Drug Administration

CS:

Chitosan

cSSSI:

Complicated skin and skin structure infections

DSC:

Differential Scanning Calorimetry

EDTA:

Ethylenediamine tetraaceticacid

FAL:

Fatty acid lipids

GBR:

Guided bone regeneration

GIT:

Gastrointestinal tract

GMO:

Glyceryl monooleate

HD6:

Human α-defensin 6

LCS:

Liquid Crystalline System

MDR:

Multidrug Resistance

MIC:

Minimum inhibitory concentration

MRSA:

Methicillin-resistant Staphylococcus aureus

MSN:

Mesoporous silica nanoparticles

MSNLP:

Mesoporous silica nanoparticles with large pores

nHAP:

Hydroxyapatite nanoparticles

NLC:

Nanostructured lipid carriers

PCL:

Polycaprolactone

PDI:

Polydispersity Index

PEG:

Polyethylene glycol

PEICD:

Polyethyleneimine

PEO:

Polyethylene oxide

PHYT:

Phytantriol

PLGA:

Polylactic-co-glycolic acid

SAXS:

Small angle X-ray scattering

SLN:

Solid Lipid Nanoparticle

SPPS:

Solid Phase Peptide Synthesis

SWOT:

Strengths, weaknesses, opportunities, and threats

TEM:

Transmission electron microscopy

USFDA:

United States Food and Drug Administrarion

WAXD:

Wide angle X-ray diffraction

WHO:

World Health Organization

WPI:

Whey protein isolate

β-CD:

β-cyclodextrin

References

  1. What are antibiotics and how do they work? | Microbiology Society. https://microbiologysociety.org/members-outreach-resources/outreach-resources/antibiotics-unearthed/antibiotics-and-antibiotic-resistance/what-are-antibiotics-and-how-do-they-work.html. Accessed 8 Jul 2022.

  2. Rima M, Fajloun Z, Sabatier JM, Bechinger B, Naas T. Antimicrobial peptides: a potent alternative to antibiotics. Antibiotics. 2021;10:1095. https://doi.org/10.3390/antibiotics10091095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. World Health Organization. Antimicrobial resistance. https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance. Accessed 1 Jun 2022.

  4. Llor C, Bjerrum L. Antimicrobial resistance: risk associated with antibiotic overuse and initiatives to reduce the problem. Ther Adv Drug Saf. 2014;5:229. https://doi.org/10.1177/2042098614554919.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Makabenta JMV, Nabawy A, Li CH, Schmidt-Malan S, Patel R, Rotello VM. Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections. Nat Rev Microbiol. 2021;19:23. https://doi.org/10.1038/s41579-020-0420-1.

    Article  CAS  PubMed  Google Scholar 

  6. Saini R, Saini S, Sharma S. Nanotechnology: the future medicine. J Cutan Aesthet Surg. 2010;3:32. https://doi.org/10.4103/0974-2077.63301.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Greco I, Molchanova N, Holmedal E, Jenssen H, Hummel BD, Watts JL, et al. Correlation between hemolytic activity, cytotoxicity and systemic in vivo toxicity of synthetic antimicrobial peptides. Sci Rep. 2020;10:1–13. https://doi.org/10.1038/s41598-020-69995-9.

    Article  CAS  Google Scholar 

  8. Mahlapuu M, Håkansson J, Ringstad L, Björn C. Antimicrobial peptides: an emerging category of therapeutic agents. Front Cell Infect Microbiol. 2016;6:194. https://doi.org/10.3389/fcimb.2016.00194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Scocchi M, Mardirossian M, Runti G, Benincasa M. Non-membrane permeabilizing modes of action of antimicrobial peptides on bacteria. Curr Top Med Chem. 2015;16:76–88. https://doi.org/10.2174/1568026615666150703121009.

    Article  CAS  Google Scholar 

  10. Huan Y, Kong Q, Mou H, Yi H. Antimicrobial peptides: classification, design, application and research progress in multiple fields. Front Microbiol. 2020;11:2559. https://doi.org/10.3389/fmicb.2020.582779.

    Article  Google Scholar 

  11. Hancock REW, Chapple DS. Peptide antibiotics. Antimicrob Agents Chemother. 1999;43:1317–23. https://doi.org/10.1128/aac.43.6.1317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nguyen R, Khanna NR, Safadi AO, Sun Y. Bacitracin Topical. In: statPearls. Treasure Island: StatPearls Publishing; 2021.

    Google Scholar 

  13. Tedesco KL, Rybak MJ. Daptomycin. Pharmacotherapy. 2004;24:41–57. https://doi.org/10.1592/phco.24.1.41.34802.

    Article  CAS  PubMed  Google Scholar 

  14. Cada D, Ingram K, Baker D. Formulary drug reviews: Dalbavancin. Hosp Pharm. 2014;49:851–61. https://doi.org/10.1310/hpj4909-851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Corey GR, Kabler H, Mehra P, Gupta S, Overcash JS, Porwal A, et al. Single-dose oritavancin in the treatment of acute bacterial skin infections. N Engl J Med. 2014;370:2180–90. https://doi.org/10.1056/nejmoa1310422.

    Article  PubMed  Google Scholar 

  16. U.S. Food and Drug Administration. VIALS VANCOCIN® HCl Vancomycin hydrochloride for injection USP for intravenous use. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/060180s049lbl.pdf. Accessed 9 Jul 2022.

  17. Goldstein BP, Rosina R, Parenti F. Teicoplanin. In: Nagarajan R, editor. Glycopeptide antibiotics. Boca Raton: CRC Press; 2020. p. 273–308.

    Chapter  Google Scholar 

  18. Higgins DL, Chang R, Debabov DV, Leung J, Wu T, Krause KM, et al. Telavancin, a multifunctional lipoglycopeptide, disrupts both cell wall synthesis and cell membrane integrity in methicillin-resistant staphylococcus aureus. Antimicrob Agents Chemother. 2005;49:1127. https://doi.org/10.1128/aac.49.3.1127-1134.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Otvos L. Antibacterial peptides and proteins with multiple cellular targets. J Pept Sci. 2005;1:697–706. https://doi.org/10.1002/psc.698.

    Article  CAS  Google Scholar 

  20. Cudic M, Otvos L Jr. Intracellular targets of antibacterial peptides. Curr Drug Targets. 2002;3:101–6. https://doi.org/10.2174/1389450024605445.

    Article  CAS  PubMed  Google Scholar 

  21. Eckert R, Sullivan R, Shi W. Targeted antimicrobial treatment to re-establish a healthy microbial flora for long-term protection. Adv Dent Res. 2012;24:94–7. https://doi.org/10.1177/0022034512453725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Biswaro LS, da Sousa MGC, Rezende TMB, Dias SC, Franco OL. Antimicrobial peptides and nanotechnology, recent advances and challenges. Front Microbiol. 2018;9:855. https://doi.org/10.3389/fmicb.2018.00855.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Storm G, Belliot SO, Daemen T, Lasic DD. Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system. Adv Drug Deliv Rev. 1995;17:31–48. https://doi.org/10.1016/0169-409X%2895%2900039-A.

    Article  CAS  Google Scholar 

  24. Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP, Acosta-Torres LS, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol. 2018;16:1–33. https://doi.org/10.1186/s12951-018-0392-8.

    Article  CAS  Google Scholar 

  25. Fromen CA, Rahhal TB, Robbins GR, Kai MP, Shen TW, Luft JC, et al. Nanoparticle surface charge impacts distribution, uptake and lymph node trafficking by pulmonary antigen-presenting cells. Nanomedicine. 2016;12:677–87. https://doi.org/10.1016/j.nano.2015.11.002.

    Article  CAS  PubMed  Google Scholar 

  26. Thapa RK, Diep DB, Tønnesen HH. Nanomedicine-based antimicrobial peptide delivery for bacterial infections: recent advances and future prospects. J Pharm Investig. 2021;5:377–98. https://doi.org/10.1007/s40005-021-00525-z.

    Article  CAS  Google Scholar 

  27. Tenland E, Pochert A, Krishnan N, Rao KU, Kalsum S, Braun K, et al. Effective delivery of the anti-mycobacterial peptide NZX in mesoporous silica nanoparticles. PLoS One. 2019;14:e0212858. https://doi.org/10.1371/journal.pone.0212858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Häffner SM, Parra-Ortiz E, Browning KL, Jørgensen E, Skoda MWA, Montis C, et al. Membrane interactions of virus-like mesoporous silica nanoparticles. ACS Nano. 2021;15:6787–800. https://doi.org/10.1021/acsnano.0c10378.

    Article  CAS  PubMed  Google Scholar 

  29. Yu Q, Deng T, Lin FC, Zhang B, Zink JI. Supramolecular assemblies of heterogeneous mesoporous silica nanoparticles to co-deliver antimicrobial peptides and antibiotics for synergistic eradication of pathogenic biofilms. ACS Nano. 2020;14:5926–37. https://doi.org/10.1021/acsnano.0c01336.

    Article  CAS  PubMed  Google Scholar 

  30. Gallo J, Holinka M, Moucha CS. Antibacterial surface treatment for orthopaedic implants. Int J Mol Sci. 2014;15:13849–80. https://doi.org/10.3390/ijms150813849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pihl M, Galli S, Jimbo R, Andersson M. Osseointegration and antibacterial effect of an antimicrobial peptide releasing mesoporous titania implant. J Biomed Mater Res B Appl Biomater. 2021;109:1787–95. https://doi.org/10.1002/jbm.b.34838.

    Article  CAS  PubMed  Google Scholar 

  32. Kamaly N, Yameen B, Wu J, Farokhzad OC. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem Rev. 2016;116:2602–63. https://doi.org/10.1021/acs.chemrev.5b00346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Walkenhorst WF, Klein JW, Vo P, Wimley WC. pH dependence of microbe sterilization by cationic antimicrobial peptides. Antimicrob Agents Chemother. 2013;57:3312–20. https://doi.org/10.1128/aac.00063-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gómez-Sequeda N, Ruiz J, Ortiz C, Urquiza M, Torres R. Potent and specific antibacterial activity against Escherichia coli O157:H7 and methicillin resistant Staphylococcus aureus (MRSA) of G17 and G19 peptides encapsulated into Poly-Lactic-Co-Glycolic Acid (PLGA) nanoparticles. Antibiotics. 2020;9:384. https://doi.org/10.3390/antibiotics9070384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Atay HY. Antibacterial activity of chitosan-based systems. Funct Chitosan. 2020:457–89. https://doi.org/10.1007/978-981-15-0263-7_15.

  36. Sun T, Zhan B, Zhang W, Qin D, Xia G, Zhang H, et al. Carboxymethyl chitosan nanoparticles loaded with bioactive peptide OH-CATH30 benefit nonscar wound healing. Int J Nanomedicine. 2018;13:5771–86. https://doi.org/10.2147/IJN.S156206.

    Article  PubMed  Google Scholar 

  37. Sharma R, Raghav R, Priyanka K, Rishi P, Sharma S, Srivastava S, et al. Exploiting chitosan and gold nanoparticles for antimycobacterial activity of in silico identified antimicrobial motif of human neutrophil peptide-1. Sci Rep. 2019;9:1. https://doi.org/10.1038/s41598-019-44256-6.

    Article  CAS  Google Scholar 

  38. Heunis TDJ, Smith C, Dicks LMT. Evaluation of a nisin-eluting nanofiber scaffold to treat staphylococcus aureus-induced skin infections in mice. Antimicrob Agents Chemother. 2013;57:3928–35. https://doi.org/10.1128/aac.00622-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. He Y, Jin Y, Wang X, Yao S, Li Y, Wu Q, et al. An antimicrobial peptide-loaded gelatin/chitosan nanofibrous membrane fabricated by sequential layer-by-layer electrospinning and electrospraying techniques. Nano. 2018;8:327. https://doi.org/10.3390/nano8050327.

    Article  CAS  Google Scholar 

  40. Román JT, Fuenmayor CA, Dominguez CMZ, Clavijo-Grimaldo Di, Acosta M, García-Castañeda JE, et al. Pullulan nanofibers containing the antimicrobial palindromic peptide LfcinB (21-25)Pal obtained via electrospinning. RSC Adv. 2019;9:20432–8. https://doi.org/10.1039/C9RA03643A.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Amiri N, Ajami S, Shahroodi A, Jannatabadi N, Amiri Darban S, Fazly Bazzaz BS, et al. Teicoplanin-loaded chitosan-PEO nanofibers for local antibiotic delivery and wound healing. Int J Biol Macromol. 2020;162:645–56. https://doi.org/10.1016/j.ijbiomac.2020.06.195.

    Article  CAS  PubMed  Google Scholar 

  42. Karami Z, Hamidi M. Cubosomes: remarkable drug delivery potential. Drug Discov Today. 2016;21:789–801. https://doi.org/10.1016/j.drudis.2016.01.004.

    Article  CAS  PubMed  Google Scholar 

  43. Dyett BP, Yu H, Lakic B, Silva N, Dahdah A, Bao L, et al. Delivery of antimicrobial peptides to model membranes by cubosome nanocarriers. J Colloid Interface Sci. 2021;600:14–22. https://doi.org/10.1016/j.jcis.2021.03.161.

    Article  CAS  PubMed  Google Scholar 

  44. Aida KL, Kreling PF, Caiaffa KS, Calixto GMF, Chorilli M, Spolidorio DMP, et al. Antimicrobial peptide-loaded liquid crystalline precursor bioadhesive system for the prevention of dental caries. Int J Nanomedicine. 2018;13:3081–91. https://doi.org/10.2147/IJN.S155245.

    Article  PubMed  Google Scholar 

  45. Meikle TG, Zabara A, Waddington LJ, Separovic F, Drummond CJ, Conn CE. Incorporation of antimicrobial peptides in nanostructured lipid membrane mimetic bilayer cubosomes. Colloids Surf B: Biointerfaces. 2017;152:143–51. https://doi.org/10.1016/j.colsurfb.2017.01.004.

    Article  CAS  PubMed  Google Scholar 

  46. Meikle TG, Dharmadana D, Hoffmann SV, Jones NC, Drummond CJ, Conn CE. Analysis of the structure, loading and activity of six antimicrobial peptides encapsulated in cubic phase lipid nanoparticles. J Colloid Interface Sci. 2021;587:90–100. https://doi.org/10.1016/j.jcis.2020.11.124.

    Article  CAS  PubMed  Google Scholar 

  47. Severino P, Silveira EF, Loureiro K, Chaud MV, Antonini D, Lancellotti M, et al. Antimicrobial activity of polymyxin-loaded solid lipid nanoparticles (PLX-SLN): characterization of physicochemical properties and in vitro efficacy. Eur J Pharm Sci. 2017;106:177–84. https://doi.org/10.1016/j.ejps.2017.05.063.

    Article  CAS  PubMed  Google Scholar 

  48. Fumakia M, Ho EA. Nanoparticles encapsulated with LL37 and serpin A1 promotes wound healing and synergistically enhances antibacterial activity. Mol Pharm. 2016;13:2318–31. https://doi.org/10.1021/acs.molpharmaceut.6b00099.

    Article  CAS  PubMed  Google Scholar 

  49. Lewies A, Wentzel JF, Jordaan A, Bezuidenhout C, du Plessis LH. Interactions of the antimicrobial peptide nisin Z with conventional antibiotics and the use of nanostructured lipid carriers to enhance antimicrobial activity. Int J Pharm. 2017;526:244–53. https://doi.org/10.1016/j.ijpharm.2017.04.071.

    Article  CAS  PubMed  Google Scholar 

  50. Garcia-Orue I, Gainza G, Girbau C, Alonso R, Aguirre JJ, Pedraz JL, et al. LL37 loaded nanostructured lipid carriers (NLC): a new strategy for the topical treatment of chronic wounds. Eur J Pharm Biopharm. 2016;108:310–6. https://doi.org/10.1016/j.ejpb.2016.04.006.

    Article  CAS  PubMed  Google Scholar 

  51. Gomaa AI, Martinent C, Hammami R, Fliss I, Subirade M. Dual coating of liposomes as encapsulating matrix of antimicrobial peptides: development and characterization. Front Chem. 2017;5:103. https://doi.org/10.3389/fchem.2017.00103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Makhathini SS, Kalhapure RS, Jadhav M, Waddad AY, Gannimani R, Omolo CA, et al. Novel two-chain fatty acid-based lipids for development of vancomycin pH-responsive liposomes against Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA). J Drug Target. 2019;27:1094–107. https://doi.org/10.1080/1061186x.2019.1599380.

    Article  CAS  PubMed  Google Scholar 

  53. Li T, Lu XM, Zhang MR, Hu K, Li Z. Peptide-based nanomaterials: self-assembly, properties and applications. Bioact Mater. 2022;11:268–82. https://doi.org/10.1016/j.bioactmat.2021.09.029.

    Article  CAS  PubMed  Google Scholar 

  54. Auvynet C, Amri C, Lacombe C, Bruston F, Bourdais J, Nicolas P, et al. Structural requirements for antimicrobial versus chemoattractant activities for dermaseptin S9. FEBS J. 2008;275:4134–51. https://doi.org/10.1111/j.1742-4658.2008.06554.x.

    Article  CAS  PubMed  Google Scholar 

  55. Jang H, Arce FT, Mustata M, Ramachandran S, Capone R, Nussinov R, et al. Antimicrobial Protegrin-1 forms amyloid-like fibrils with rapid kinetics suggesting a functional link. Biophys J. 2011;100:1775–83. https://doi.org/10.1016/j.bpj.2011.01.072.

    Article  CAS  PubMed  Google Scholar 

  56. Tayeb-Fligelman E, Tabachnikov O, Moshe A, Goldshmidt-Tran O, Sawaya MR, Coquelle N, et al. The cytotoxic Staphylococcus aureus PSMα3 reveals a cross-α amyloid-like fibril. Science. 2017;355:831–3. https://doi.org/10.1126/science.aaf4901.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Schnaider L, Brahmachari S, Schmidt NW, Mensa B, Shaham-Niv S, Bychenko D, et al. Self-assembling dipeptide antibacterial nanostructures with membrane disrupting activity. Nat Commun. 2017;8:1–10. https://doi.org/10.1038/s41467-017-01447-x.

    Article  CAS  Google Scholar 

  58. Sancho-Vaello E, François P, Bonetti EJ, et al. Structural remodeling and oligomerization of human cathelicidin on membranes suggest fibril-like structures as active species. Sci Rep. 2017;7:15371. https://doi.org/10.1038/s41598-017-14206-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chairatana P, Nolan EM. Human α-Defensin 6: a small peptide that self-assembles and protects the host by entangling microbes. Acc Chem Res. 2017;50:960–7. https://doi.org/10.1021/acs.accounts.6b00653.

    Article  CAS  PubMed  Google Scholar 

  60. Xi Y, Song T, Tang S, Wang N, Du J. Preparation and antibacterial mechanism insight of polypeptide-based micelles with excellent antibacterial activities. Biomacromolecules. 2016;17:3922–30. https://doi.org/10.1021/acs.biomac.6b01285.

    Article  CAS  PubMed  Google Scholar 

  61. Song HQ, Fan Y, Hu Y, Cheng G, Xu FJ. Polysaccharide–peptide conjugates: a versatile material platform for biomedical applications. Adv Funct Mater. 2021;31:2005978. https://doi.org/10.1002/adfm.202005978.

    Article  CAS  Google Scholar 

  62. Sahariah P, Sørensen KK, Hjálmarsdóttir MA, Sigurjónsson ÓE, Jensen KJ, Másson M, et al. Antimicrobial peptide shows enhanced activity and reduced toxicity upon grafting to chitosan polymers. Chem Commun. 2015;51:11611–4. https://doi.org/10.1039/C5CC04010H.

    Article  CAS  Google Scholar 

  63. Ferguson EL, Azzopardi E, Roberts JL, Walsh TR, Thomas DW. Dextrin-colistin conjugates as a model bioresponsive treatment for multidrug resistant bacterial infections. Mol Pharm. 2014;11:4437–47. https://doi.org/10.1021/mp500584u.

    Article  CAS  PubMed  Google Scholar 

  64. Kumar P, Takayesu A, Abbasi U, Kalathottukaren MT, Abbina S, Kizhakkedathu JN, et al. Antimicrobial peptide-polymer conjugates with high activity: influence of polymer molecular weight and peptide sequence on antimicrobial activity, proteolysis, and biocompatibility. ACS Appl Mater Interfaces. 2017;9:37575–86. https://doi.org/10.1021/acsami.7b09471.

    Article  CAS  PubMed  Google Scholar 

  65. Lequeux I, Ducasse E, Jouenne T, Thebault P. Addition of antimicrobial properties to hyaluronic acid by grafting of antimicrobial peptide. Eur Polym J. 2014;51:182–90. https://doi.org/10.1016/j.eurpolymj.2013.11.012.

    Article  CAS  Google Scholar 

  66. Cui Q, Xu QJ, Liu L, Guan LL, Jiang XY, Inam M, et al. Preparation, characterization and pharmacokinetic study of N-Terminal PEGylated D-Form antimicrobial peptide OM19r-8. J Pharm Sci. 2021;110:1111–9. https://doi.org/10.1016/j.xphs.2020.10.048.

    Article  CAS  PubMed  Google Scholar 

  67. Nyström L, Strömstedt AA, Schmidtchen A, Malmsten M. Peptide-loaded microgels as antimicrobial and anti-inflammatory surface coatings. Biomacromolecules. 2018;19:3456–66. https://doi.org/10.1021/acs.biomac.8b00776.

    Article  CAS  PubMed  Google Scholar 

  68. Håkansson J, Ringstad L, Umerska A, Johansson J, Andersson T, Boge L, et al. Characterization of the in vitro, ex vivo, and in vivo efficacy of the antimicrobial peptide DPK-060 used for topical treatment. Front Cell Infect Microbiol. 2019;9:174. https://doi.org/10.3389/fcimb.2019.00174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Almaaytah A, Mohammed GK, Abualhaijaa A, Al-Balas Q. Development of novel ultrashort antimicrobial peptide nanoparticles with potent antimicrobial and antibiofilm activities against multidrug-resistant bacteria. Drug Des Dev Ther. 2017;11:3159–70. https://doi.org/10.2147/dddt.s147450.

    Article  CAS  Google Scholar 

  70. Sierra JM, Fusté E, Rabanal F, Vinuesa T, Viñas M. An overview of antimicrobial peptides and the latest advances in their development. Expert Opin Biol Ther. 2017;17:663–76. https://doi.org/10.1080/14712598.2017.1315402.

    Article  PubMed  Google Scholar 

  71. Joo HS, Fu CI, Otto M. Bacterial strategies of resistance to antimicrobial peptides. Philos Trans R Soc Lond Ser B Biol Sci. 2016;371:20150292. https://doi.org/10.1098/rstb.2015.0292.

    Article  CAS  Google Scholar 

  72. Mohammadi-Samani S, Taghipour B. PLGA micro and nanoparticles in delivery of peptides and proteins; problems and approaches. Pharm Dev Technol. 2015;20:385–93. https://doi.org/10.3109/10837450.2014.882940.

    Article  CAS  PubMed  Google Scholar 

  73. Fam SY, Chee CF, Yong CY, Ho KL, Mariatulqabtiah AR, Tan WS. Stealth coating of nanoparticles in drug-delivery systems. Nano. 2020;10:787. https://doi.org/10.3390/nano10040787.

    Article  CAS  Google Scholar 

  74. Gustafson HH, Holt-Casper D, Grainger DW, Ghandehari H. Nanoparticle uptake: the phagocyte problem. Nano Today. 2015;10:487–510. https://doi.org/10.1016/j.nantod.2015.06.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mahlapuu M, Björn C, Ekblom J. Antimicrobial peptides as therapeutic agents: opportunities and challenges. Crit Rev Biotechnol. 2020;40:978–92. https://doi.org/10.1080/07388551.2020.1796576.

    Article  CAS  PubMed  Google Scholar 

  76. Feng Q, Huang Y, Chen M, Li G, Chen Y. Functional synergy of α-helical antimicrobial peptides and traditional antibiotics against Gram-negative and Gram-positive bacteria in vitro and in vivo. Eur J Clin Microbiol Infect Dis. 2015;34:197–204. https://doi.org/10.1007/s10096-014-2219-3.

    Article  CAS  PubMed  Google Scholar 

  77. ClinicalTrials.gov Search of: active, not recruiting, completed, terminated studies | pexiganan (MSI-78) - list results. https://www.clinicaltrials.gov/ct2/results?cond=pexiganan+%28MSI-78%29&Search=Apply&recrs=d&recrs=h&recrs=e&age_v=&gndr=&type=&rslt. Accessed 8 Jul 2022.

  78. Iwuji K, Larumbe-Zabala E, Bijlani S, Nugent K, Kanu A, Manning E, et al. Prevalence of bactericidal/permeability-increasing protein autoantibodies in cystic fibrosis patients: systematic review and meta-analysis. Pediatr Allergy Immunol Pulmonol. 2019;32:45–51. https://doi.org/10.1089/ped.2018.0970.

    Article  PubMed  PubMed Central  Google Scholar 

  79. AdisInsight: Omiganan - Cutanea Life Sciences. https://adisinsight.springer.com/drugs/800011276. Accessed 8 Jul 2022.

  80. Marr A, Gooderham W, Hancock R. Antibacterial peptides for therapeutic use: obstacles and realistic outlook. Curr Opin Pharmacol. 2006;6:468–72. https://doi.org/10.1016/j.coph.2006.04.006.

    Article  CAS  PubMed  Google Scholar 

  81. Prince A, Sandhu P, Kumar P, Dash E, Sharma S, Arakha M, et al. Lipid-II independent antimicrobial mechanism of nisin depends on its crowding and degree of oligomerization. Sci Rep. 2016;6:1–15. https://doi.org/10.1038/srep37908.

    Article  CAS  Google Scholar 

  82. David JM, Rajasekaran AK. Gramicidin A: a new mission for an old antibiotic. J Kidney Cancer VHL. 2015;2:15–24. https://doi.org/10.15586/jkcvhl.2015.21.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Morrison DC, Jacobs DM. Binding of polymyxin B to the lipid A portion of bacterial lipopolysaccharides. Immunochemistry. 1976;13:813–8. https://doi.org/10.1016/0019-2791(76)90181-6.

    Article  CAS  PubMed  Google Scholar 

  84. Yu Z, Qin W, Lin J, Fang S, Qiu J. Antibacterial mechanisms of polymyxin and bacterial resistance. Biomed Res Int. 2015;2015:679109. https://doi.org/10.1155/2015/679109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Taylor SD, Palmer M. The action mechanism of daptomycin. Bioorg Med Chem. 2016;24:6253–68. https://doi.org/10.1016/j.bmc.2016.05.052.

    Article  CAS  PubMed  Google Scholar 

  86. Brown KL, Poon GFT, Birkenhead D, Pena OM, Falsafi R, Dahlgren C, et al. Host defense peptide LL-37 selectively reduces proinflammatory macrophage responses. J Immunol. 2011;186:5497–505. https://doi.org/10.4049/jimmunol.1002508.

    Article  CAS  PubMed  Google Scholar 

  87. Lee G, Bae H. Anti-inflammatory applications of melittin, a major component of bee venom: detailed mechanism of action and adverse effects. Molecules. 2016;21:616. https://doi.org/10.3390/molecules21050616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Schneider T, Gries K, Josten M, Wiedemann I, Pelzer S, Labischinski H, et al. The lipopeptide antibiotic friulimicin B inhibits cell wall biosynthesis through complex formation with bactoprenol phosphate. Antimicrob Agents Chemother. 2009;53:1610–8. https://doi.org/10.1128/AAC.01040-08.

    Article  CAS  PubMed  Google Scholar 

  89. Srinivas N, Jetter P, Ueberbacher BJ, Werneburg M, Zerbe K, Steinmann J, et al. Peptidomimetic antibiotics target outer-membrane biogenesis in pseudomonas aeruginosa. Science. 2010;327:1010–3. https://doi.org/10.1126/science.1182749.

    Article  CAS  PubMed  Google Scholar 

  90. Schultz H, Weiss JP. The bactericidal/permeability-increasing protein (BPI) in infection and inflammatory disease. Clin Chim Acta. 2007;384:12–23. https://doi.org/10.1016/j.cca.2007.07.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Menzel L, Orlov D, Wang V, Hong T, Azimov R, Falla T, et al. Bactericidal mechanism of iseganan (IB-367), a rapidly acting antimicrobial protegrin peptide. Interscience conference on Antimicrobial Agents and Chemotherapy. 200;41. https://www.researchgate.net/publication/271217287_Bactericidal_mechanism_of_iseganan_IB-367_a_rapidly_acting_antimicrobial_protegrin_peptide Accessed 15 Jul 2022.

  92. Alam MZ, Wu X, Mascio C, Chesnel L, Hurdle JG. Mode of action and bactericidal properties of surotomycin against growing and nongrowing clostridium difficile. Antimicrob Agents Chemother. 2015;59:5165–70. https://doi.org/10.1128/AAC.01087-15.

    Article  CAS  PubMed  Google Scholar 

  93. Gottler LM, Ramamoorthy A. Structure, membrane orientation, mechanism, and function of pexiganan - a highly potent antimicrobial peptide designed from magainin. Biochim Biophys Acta Biomembr. 2009;1788:1680–6. https://doi.org/10.1016/j.bbamem.2008.10.009.

    Article  CAS  Google Scholar 

  94. Easton DM, Nijnik A, Mayer ML, Hancock REW. Potential of immunomodulatory host defense peptides as novel anti-infectives. Trends Biotechnol. 2009;27:582–90. https://doi.org/10.1016/j.tibtech.2009.07.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Rubinchik E, Dugourd D, Algara T, Pasetka C, Friedland HD. Antimicrobial and antifungal activities of a novel cationic antimicrobial peptide, omiganan, in experimental skin colonisation models. Int J Antimicrob Agents. 2009;34:457–61. https://doi.org/10.1016/j.ijantimicag.2009.05.003.

    Article  CAS  PubMed  Google Scholar 

  96. Crowther GS, Baines SD, Todhunter SL, Freeman J, Chilton CH, Wilcox MH. Evaluation of NVB302 versus vancomycin activity in an in vitro human gut model of Clostridium difficile infection. J Antimicrob Chemother. 2013;68:168–76. https://doi.org/10.1093/jac/dks359.

    Article  CAS  PubMed  Google Scholar 

  97. Malanovic N, Leber R, Schmuck M, Kriechbaum M, Cordfunke RA, Drijfhout JW, et al. Phospholipid-driven differences determine the action of the synthetic antimicrobial peptide OP-145 on gram-positive bacterial and mammalian membrane model systems. Biochim Biophys Acta Biomembr. 2015;1848:2437–47. https://doi.org/10.1016/j.bbamem.2015.07.010.

    Article  CAS  Google Scholar 

  98. Woong SJ, Xuewei SL, Sun JN, Edgerton M. The P-113 fragment of histatin 5 requires a specific peptide sequence for intracellular translocation in candida albicans, which is independent of cell wall binding. Antimicrob Agents Chemother. 2008;52:497–504. https://doi.org/10.1128/aac.01199-07.

    Article  Google Scholar 

  99. Isaksson J, Brandsdal BO, Engqvist M, Flaten GE, Svendsen JSM, Stensen W. A synthetic antimicrobial peptidomimetic (LTX 109): Stereochemical impact on membrane disruption. J Med Chem. 2011;54:5786–95. https://doi.org/10.1021/jm200450h.

    Article  CAS  PubMed  Google Scholar 

  100. Van GR, Kox M, Van ELT, Pickkers P. Immunomodulatory and kidney-protective effects of the human chorionic gonadotropin derivate EA-230. Nephron. 2018;140:148–51. https://doi.org/10.1159/000490772.

    Article  CAS  Google Scholar 

  101. Kudrimoti M, Curtis A, Azawi S, Worden F, Katz S, Adkins D, et al. Dusquetide: a novel innate defense regulator demonstrating a significant and consistent reduction in the duration of oral mucositis in preclinical data and a randomized, placebo-controlled phase 2a clinical study. J Biotechnol. 2016;239:115–25. https://doi.org/10.1016/j.jbiotec.2016.10.010.

    Article  CAS  PubMed  Google Scholar 

  102. Brouwer CP, Welling MM, Brouwer PJM, Roscini CL, Cardinali G, Corte L, et al. Structure-activity relationship study of synthetic variants derived from the highly potent human antimicrobial peptide hLF (1-11). Cohesive J Microbiol. Infect Dis. 2018:1. https://doi.org/10.31031/cjmi.2018.01.000512.

  103. Guo L, Mclean JS, Yang Y, Eckert R, Kaplan CW, Kyme P, et al. Precision-guided antimicrobial peptide as a targeted modulator of human microbial ecology. Proc Natl Acad Sci U S A. 2015;112:7569–74. https://doi.org/10.1073/pnas.1506207112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Mercer DK, Robertson JC, Miller L, Stewart CS, O’neil DA. NP213 (Novexatin®): a unique therapy candidate for onychomycosis with a differentiated safety and efficacy profile. Med Mycol. 2020;58:1064–72. https://doi.org/10.1093/mmy/myaa015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Fulco P, Wenzel RP. Ramoplanin: a topical lipoglycodepsipeptide antibacterial agent. Expert Rev Anti-Infect Ther. 2006;4:939–45. https://doi.org/10.1586/14787210.4.6.939.

    Article  CAS  PubMed  Google Scholar 

  106. Bulger EM, Maier RV, Sperry J, Joshi M, Henry S, Moore FA, et al. A novel drug for treatment of necrotizing soft-tissue infections: a randomized clinical trial. JAMA Surg. 2014;149:528–36. https://doi.org/10.1001/jamasurg.2013.4841.

    Article  CAS  PubMed  Google Scholar 

  107. Muchintala D, Suresh V, Raju D, Sashidhar RB. Synthesis and characterization of cecropin peptide-based silver nanocomposites: its antibacterial activity and mode of action. Mater Sci Eng C Mater Biol Appl. 2020:110. https://doi.org/10.1016/j.msec.2020.110712.

  108. Yasir M, Dutta D, Willcox MDP. Mode of action of the antimicrobial peptide Mel4 is independent of Staphylococcus aureus cell membrane permeability. PLoS One. 2019:14. https://doi.org/10.1371/journal.pone.0215703.

  109. Yasir M, Dutta D, Hossain KR, Chen R, Ho KKK, Kuppusamy R, et al. Mechanism of action of surface immobilized antimicrobial peptides against Pseudomonas aeruginosa. Front Microbiol. 2020:10. https://doi.org/10.3389/fmicb.2019.03053.

  110. Leeds JA, Sachdeva M, Mullin S, Dzink-Fox J, LaMarche MJ. Mechanism of action of and mechanism of reduced susceptibility to the novel anti-Clostridium difficile compound LFF571. Antimicrob Agents Chemother. 2012;56:4463–5. https://doi.org/10.1128/AAC.06354-11.

    Article  CAS  PubMed  Google Scholar 

  111. Travis S, Yap LM, Hawkey C, Warren B, Lazarov M, Fong T, et al. RDP58 is a novel and potentially effective oral therapy for ulcerative colitis. Inflamm Bowel Dis. 2005;11:713–9. https://doi.org/10.1097/01.mib.0000172807.26748.16.

    Article  PubMed  Google Scholar 

  112. Peyrusson F, Butler D, Tulkens PM, Van Bambeke F. Cellular pharmacokinetics and intracellular activity of the novel peptide deformylase inhibitor GSK1322322 against Staphylococcus aureus laboratory and clinical strains with various resistance phenotypes: studies with human THP-1 monocytes and J774 murine macrophages. Antimicrob Agents Chemother. 2015;59:5747–60. https://doi.org/10.1128/aac.00827-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Edsfeldt S, Holm B, Mahlapuu M, Reno C, Hart DA, Wiig M, et al. PXL01 in sodium hyaluronate results in increased PRG4 expression: a potential mechanism for anti-adhesion. Ups J Med Sci. 2017;122:28–34. https://doi.org/10.1080/03009734.2016.1230157.

    Article  PubMed  Google Scholar 

  114. Doi K, Hu X, Yuen PST, Leelahavanichkul A, Yasuda H, Kim SM, et al. AP214, an analogue of α-melanocyte-stimulating hormone, ameliorates sepsis-induced acute kidney injury and mortality. Kidney Int. 2008;73:1266–74. https://doi.org/10.1038/ki.2008.97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Mensa B, Howell GL, Scott R, DeGrado WF. Comparative mechanistic studies of brilacidin, daptomycin, and the antimicrobial peptide LL16. Antimicrob Agents Chemother. 2014;58:5136–45. https://doi.org/10.1128/AAC.02955-14.

    Article  CAS  PubMed  Google Scholar 

  116. Ooi N, Miller K, Hobbs J, Rhys-Williams W, Love W, Chopra I. XF-73, a novel antistaphylococcal membrane-active agent with rapid bactericidal activity. J Antimicrob Chemother. 2009;64:735–40. https://doi.org/10.1093/jac/dkp299.

    Article  CAS  PubMed  Google Scholar 

  117. Csato M, Kenderessy AS, Dobozy A. Enhancement of Candida albicans killing activity of separated human epidermal cells by α-melanocyte stimulating hormone. Br J Dermatol. 1989;121:145–7. https://doi.org/10.1111/j.1365-2133.1989.tb01415.x.

    Article  CAS  PubMed  Google Scholar 

  118. Gualillo O, Lago F, Gómez-Reino J, Casanueva FF, Dieguez C. Ghrelin, a widespread hormone: insights into molecular and cellular regulation of its expression and mechanism of action. FEBS Lett. 2003;552:105–9. https://doi.org/10.1016/s0014-5793(03)00965-7.

    Article  CAS  PubMed  Google Scholar 

  119. Itoh H, Tokumoto K, Kaji T, Paudel A, Panthee S, Hamamoto H, et al. Total synthesis and biological mode of action of WAP-8294A2: a Menaquinone-targeting antibiotic. J Org Chem. 2018;83:6924–35. https://doi.org/10.1021/acs.joc.7b02318.

    Article  CAS  PubMed  Google Scholar 

  120. Miyake O, Ochiai A, Hashimoto W, Murata K. Origin and diversity of Alginate Lyases of families PL-5 and PL-7 in Sphingomonas sp. Strain A1. J Bacteriol. 2004;186:2891–6. https://doi.org/10.1128/JB.186.9.2891-2896.2004.

    Article  CAS  PubMed  Google Scholar 

  121. Yu HB, Kielczewska A, Rozek A, Takenaka S, Li Y, Thorson L, et al. Sequestosome-1/p62 is the key intracellular target of innate defense regulator peptide. J Biol Chem. 2009;284:36007–11. https://doi.org/10.1074/jbc.c109.073627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derajram Benival .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karunakaran, B., Vitore, J., Sharma, A., Rana, D., Benival, D. (2023). Nanocarriers for Delivery of Peptide Antibiotics. In: Patravale, V.B., Date, A.A., Jindal, A.B. (eds) Nanomedicines for the Prevention and Treatment of Infectious Diseases. AAPS Advances in the Pharmaceutical Sciences Series, vol 56. Springer, Cham. https://doi.org/10.1007/978-3-031-39020-3_1

Download citation

Publish with us

Policies and ethics