Skip to main content

Dosimetry in Radiopharmaceutical Therapy

  • Chapter
  • First Online:
Radiopharmaceutical Therapy

Abstract

The foundational principle of radiopharmaceutical therapy (RPT) is to deliver tissue-altering radiation to diseased tissue while minimizing damage to healthy tissue. The utility and efficacy of a targeted radiotherapeutic procedure arise from the interplay between the physiological distribution of a radiopharmaceutical, the emitted particles of the associated radionuclide, the subject’s anatomy, and radiobiologic factors. The characterization of this multifactorial paradigm is encapsulated in the field of internal dosimetry. Through dosimetry, we quantify the distribution and strength of the intervention in terms of radiation dose deposition. This information supports clinicians in predicting and optimizing treatment outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Effective uptake/clearance considers the activity of the radionuclide (or proportional parameter, e.g., the activity concentration) and is a function of both radioactive decay and biological translocation mechanisms.

  2. 2.

    Biological uptake/clearance considers the activity of a radionuclide that has been decay-corrected back to the time of administration. Thus, biological uptake/clearance is only a function of biological translocation.

  3. 3.

    Alpha particles, beta particles, and monoenergetic electrons (Auger and conversion electrons) are considered weakly penetrating due to their short tissue ranges

  4. 4.

    Photons (X-rays, γ-rays) are considered penetrating radiations.

  5. 5.

    S-values can be usefully defined in several ways. MIRD Pamphlet 21 defines the S-value as the absorbed dose rate per unit activity in the specified source region. Due to the stochastic nature of decay and dose deposition, all interpretations should consider the S-value to be a mean value averaged over many interactions.

  6. 6.

    In dosimetry calculations, the rest of body represents a combination of all other tissues, in which the activity is assumed to be uniformly distributed. Tissues without pronounced uptake are often considered collectively as “rest of body” tissues, as it is impractical to segment (via imaging) or harvest (for ex vivo counting) every individual tissue.

  7. 7.

    Theranostics are discussed in detail in Chap. 22.

References

  1. Bolch WE, Eckerman KF, Sgouros G, Thomas SR. MIRD pamphlet No. 21: A generalized schema for radiopharmaceutical dosimetry—standardization of nomenclature. J Nucl Med. 2009;50(3):477–84.

    Article  CAS  PubMed  Google Scholar 

  2. International Atomic Energy Agency. Health effects and medical surveillance. Vienna: International Atomic Energy Agency; 2004.

    Google Scholar 

  3. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, et al. 2015 American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the american thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid. 2016;26(1):1–133.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Silberstein EB, Alavi A, Balon HR, Clarke SEM, Divgi C, Gelfand MJ, et al. The SNMMI practice guideline for therapy of thyroid disease with 131I 3.0. J Nucl Med. 2012;53(10):1633–51.

    Article  PubMed  Google Scholar 

  5. Hammes J, van Heek L, Hohberg M, Reifegerst M, Stockter S, Dietlein M, et al. Impact of different approaches to calculation of treatment activities on achieved doses in radioiodine therapy of benign thyroid diseases. EJNMMI Phys. 2018;5(1):32.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Dezarn WA, Cessna JT, DeWerd LA, Feng W, Gates VL, Halama J, et al. Recommendations of the American association of physicists in medicine on dosimetry, imaging, and quality assurance procedures for 90Y microsphere brachytherapy in the treatment of hepatic malignancies. Med Phys. 2011;38(8):4824–45.

    Article  PubMed  Google Scholar 

  7. Garin E, Tselikas L, Guiu B, Chalaye J, Edeline J, de Baere T, et al. Personalised versus standard dosimetry approach of selective internal radiation therapy in patients with locally advanced hepatocellular carcinoma (DOSISPHERE-01): a randomised, multicentre, open-label phase 2 trial. Lancet Gastroenterol Hepatol. 2021;6(1):17–29.

    Article  PubMed  Google Scholar 

  8. Zaknun JJ, Bodei L, Mueller-Brand J, Pavel ME, Baum RP, Hörsch D, et al. The joint IAEA, EANM, and SNMMI practical guidance on peptide receptor radionuclide therapy (PRRNT) in neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2013;40(5):800–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hennrich U, Kopka K. Lutathera(®): The first FDA- and EMA-approved radiopharmaceutical for peptide receptor radionuclide therapy. Pharmaceuticals (Basel). 2019;12(3):114.

    Article  CAS  PubMed  Google Scholar 

  10. Strosberg J, El-Haddad G, Wolin E, Hendifar A, Yao J, Chasen B, et al. Phase 3 Trial of 177Lu-dotatate for midgut neuroendocrine tumors. N Engl J Med. 2017;376(2):125–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Strosberg JR, Caplin ME, Kunz PL, Ruszniewski PB, Bodei L, Hendifar AE, et al. Final overall survival in the phase 3 NETTER-1 study of 177lutetium-DOTATATE in patients with midgut neuroendocrine tumors. J Clin Oncol. 2021;39(15_suppl):4112.

    Article  Google Scholar 

  12. Ljungberg M, Celler A, Konijnenberg MW, Eckerman KF, Dewaraja YK, Sjögreen-Gleisner K. MIRD pamphlet No. 26: Joint EANM/MIRD guidelines for quantitative 177Lu SPECT applied for dosimetry of radiopharmaceutical therapy. J Nucl Med. 2016;57(1):151.

    Article  CAS  PubMed  Google Scholar 

  13. Sandstrom M, Garske-Roman U, Granberg D, Johansson S, Widstrom C, Eriksson B, et al. Individualized dosimetry of kidney and bone marrow in patients undergoing 177Lu-DOTA-octreotate treatment. J Nucl Med. 2013;54(1):33–41.

    Article  PubMed  Google Scholar 

  14. Sandström M, Freedman N, Fröss-Baron K, Kahn T, Sundin A. Kidney dosimetry in 777 patients during 177Lu-DOTATATE therapy: aspects on extrapolations and measurement time points. EJNMMI Phys. 2020;7(1):73.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Schuchardt C, Kulkarni HR, Prasad V, Zachert C, Müller D, Baum RP. The bad berka dose protocol: comparative results of dosimetry in peptide receptor radionuclide therapy using 177Lu-DOTATATE, 177Lu-DOTANOC, and 177Lu-DOTATOC. In: Theranostics, gallium-68, and other radionuclides. Berlin: Springer; 2013.

    Google Scholar 

  16. Sartor O, de Bono J, Chi KN, Fizazi K, Herrmann K, Rahbar K, et al. Lutetium-177–PSMA-617 for metastatic castration-resistant. Prostate Cancer. 2021;385(12):1091–103.

    CAS  Google Scholar 

  17. Hofman MS, Emmett L, Sandhu S, Iravani A, Joshua AM, Goh JC, et al. [177Lu]Lu-PSMA-617 versus cabazitaxel in patients with metastatic castration-resistant prostate cancer (TheraP): a randomised, open-label, phase 2 trial. The Lancet. 2021;397(10276):797–804.

    Article  CAS  Google Scholar 

  18. Czernin J, Sonni I, Razmaria A, Calais J. The future of nuclear medicine as an independent specialty. J Nucl Med. 2019;60(Suppl 2):3s–12s.

    Article  CAS  PubMed  Google Scholar 

  19. Jackson P, Hofman M, McIntosh L, Buteau JP, Ravi KA. Radiation dosimetry in 177Lu-PSMA-617 therapy. Semin Nucl Med. 2022;52(2):243–54.

    Article  PubMed  Google Scholar 

  20. Wahl RL, Sgouros G, Iravani A, Jacene H, Pryma D, Saboury B, et al. Normal-tissue tolerance to radiopharmaceutical therapies, the knowns and the unknowns. 2021;62(Supplement 3):23S–35S.

    CAS  Google Scholar 

  21. Siegel JA, Thomas SR, Stubbs JB, Stabin MG, Hays MT, Koral KF, et al. MIRD pamphlet no. 16: techniques for quantitative radiopharmaceutical biodistribution data acquisition and analysis for use in human radiation dose estimates. J Nucl Med. 1999;40(2):37S–61S.

    CAS  PubMed  Google Scholar 

  22. Committee MIRD, Primer MIRD. Society of nuclear medicine and molecular imaging. Reston: In-press; 2022.

    Google Scholar 

  23. Kesner A, Olguin E, Zanzonico P, Bolch W. MIRDCalc V 1.0 – A community spreadsheet tool for organ-level radiopharmaceutical absorbed dose calculations. Journal of Nuclear Medicine. 2018;59(supplement 1):473.

    Google Scholar 

  24. Stabin MG, Sparks RB, Crowe E. OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med. 2005;46(6):1023–7.

    PubMed  Google Scholar 

  25. Stabin M, Farmer A. OLINDA/EXM 2.0: The new generation dosimetry modeling code. J Nucl Med. 2012;53(supplement 1):585.

    Google Scholar 

  26. Andersson M, Johansson L, Eckerman K, Mattsson S. IDAC-Dose 2.1, an internal dosimetry program for diagnostic nuclear medicine based on the ICRP adult reference voxel phantoms. EJNMMI Res. 2017;7(1):88.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Carter LM, Crawford TM, Sato T, Furuta T, Choi C, Kim CH, et al. PARaDIM: A PHITS-based Monte Carlo tool for internal dosimetry with tetrahedral mesh computational phantoms. J Nucl Med. 2019;60(12):1802–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Strigari L, Konijnenberg M, Chiesa C, Bardies M, Du Y, Gleisner KS, et al. The evidence base for the use of internal dosimetry in the clinical practice of molecular radiotherapy. Eur J Nucl Med Mol Imaging. 2014;41(10):1976–88.

    Article  CAS  PubMed  Google Scholar 

  29. Graves SA, Hobbs RF. Dosimetry for optimized, personalized radiopharmaceutical therapy. Semin Radiat Oncol. 2021;31(1):37–44.

    Article  PubMed  Google Scholar 

  30. Hindorf C, Glatting G, Chiesa C, Lindén O, Flux G. EANM dosimetry committee guidelines for bone marrow and whole-body dosimetry. Eur J Nucl Med Mol Imaging. 2010;37(6):1238–50.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam L. Kesner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Carter, L.M., Kesner, A.L. (2023). Dosimetry in Radiopharmaceutical Therapy. In: Bodei, L., Lewis, J.S., Zeglis, B.M. (eds) Radiopharmaceutical Therapy. Springer, Cham. https://doi.org/10.1007/978-3-031-39005-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39005-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39004-3

  • Online ISBN: 978-3-031-39005-0

  • eBook Packages: Biomedical and Life Sciences

Publish with us

Policies and ethics