Skip to main content

Case Study #2: Disialoganglioside GD2 as a Target for Radiopharmaceutical Therapy

  • Chapter
  • First Online:
Radiopharmaceutical Therapy

Abstract

Disialoganglioside GD2 is found in stem cells, some neurons and nerve fibers, and the basal layer of the skin and is overexpressed in solid tumors, including neuroblastoma, osteosarcoma, soft tissue sarcomas, and others. Dinutuximab (chimeric 14.18) and naxitamab (humanized 3F8 or hu3F8) are Food and Drug Administration (FDA)-approved monoclonal antibodies (mAb) that are specific for the penta-oligosaccharide epitope in GD2. Immuno-oncology, radioimmunodiagnosis (RID), and radioimmunotherapy (RIT) investigations with 3F8, a murine Immunoglobulin G3 (IgG3), formed the basis for the clinical development of hu3F8. The exceptional tumor selectivity of murine 3F8 in preclinical models quickly translated into clinical studies with 131I- and 124I-labeled 3F8 in the early 1990s, building a strong clinical rationale for RIT with the same platform. Yet patient survival did not improve at myeloablative doses of intravenous 131I-3F8 that required stem cell rescue. To achieve a curative therapeutic index (TI, area under the curvetumor (AUCtumor) vs. AUCnormal organs), compartmental intraommaya 131I-3F8 was developed with modest success in patients with leptomeningeal indications. Most recently, pretargeted radioimmunotherapy (PRIT) using a radiolabeled, DOTA (1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid)-based hapten has shown promise by combining the tumor targeting properties of an immunoglobulin with the rapid pharmacokinetic profile of a small molecule. This approach is non-immunogenic, does not produce neuropathic side effects, is modular, and can achieve high therapeutic indices for critical organs such as marrow, kidney, liver, and gut. This novel technology should help RIT scale the hurdle for successful clinical translation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yu AL, Gilman AL, Ozkaynak MF, et al. Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. N Engl J Med. 2010;363:1324–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cheung NK, Cheung IY, Kushner BH, et al. Murine anti-GD2 monoclonal antibody 3F8 combined with granulocyte-macrophage Colony-stimulating factor and 13-cis-retinoic acid in high-risk patients with stage 4 neuroblastoma in first remission. J Clin Oncol. 2012;30:3264–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Navid F, Sondel PM, Barfield R, et al. Phase I trial of a novel anti-GD2 monoclonal antibody, Hu14.18K322A, designed to decrease toxicity in children with refractory or recurrent neuroblastoma. J Clin Oncol. 2014;32:1445–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kushner BH, Cheung IY, Modak S, et al. Humanized 3F8 anti-GD2 monoclonal antibody dosing with granulocyte-macrophage Colony-stimulating factor in patients with resistant neuroblastoma: a phase 1 clinical trial. JAMA Oncol. 2018;4:1729–35.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Park JA, Cheung NV. Targets and antibody formats for immunotherapy of neuroblastoma. J Clin Oncol. 2020;38:1836–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lammie G, Cheung N, Gerald W, et al. Ganglioside gd(2) expression in the human nervous-system and in neuroblastomas – an immunohistochemical study. Int J Oncol. 1993;3:909–15.

    CAS  PubMed  Google Scholar 

  7. Dobrenkov K, Ostrovnaya I, Gu J, et al. Oncotargets GD2 and GD3 are highly expressed in sarcomas of children, adolescents, and young adults. Pediatr Blood Cancer. 2016;63:1780–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kushner BH, Cheung IY, Modak S, et al. Phase I trial of a bivalent gangliosides vaccine in combination with beta-glucan for high-risk neuroblastoma in second or later remission. Clin Cancer Res. 2014;20:1375–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cheung IY, Cheung NV, Modak S, et al. Survival impact of anti-GD2 antibody response in a phase II ganglioside vaccine trial among patients with high-risk neuroblastoma with prior disease progression. J Clin Oncol. 2021;39:215–26.

    Article  CAS  PubMed  Google Scholar 

  10. Cheever MA, Allison JP, Ferris AS, et al. The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin Cancer Res. 2009;15:5323–37.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Suzuki M, Cheung NK. Disialoganglioside GD2 as a therapeutic target for human diseases. Expert Opin Ther Targets. 2015:1–14. https://doi.org/10.1517/14728222.2014.986459.

  12. Cheung IY, Lo Piccolo MS, Kushner BH, et al. Early molecular response of marrow disease to biologic therapy is highly prognostic in neuroblastoma. J Clin Oncol. 2003;21:3853–8.

    Article  CAS  PubMed  Google Scholar 

  13. Terme M, Dorvillius M, Cochonneau D, et al. Chimeric antibody c.8B6 to O-Acetyl-GD2 mediates the same efficient anti-neuroblastoma effects as therapeutic ch14.18 antibody to GD2 without antibody induced allodynia. PLoS One. 2014;9:e87210.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Theruvath J, Menard M, Smith BAH, et al. Anti-GD2 synergizes with CD47 blockade to mediate tumor eradication. Nat Med. 2022;28:333–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dobrenkov K, Cheung NK. GD2-targeted immunotherapy and radioimmunotherapy. Semin Oncol. 2014;41:589–612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shurin GV, Shurin MR, Bykovskaia S, et al. Neuroblastoma-derived gangliosides inhibit dendritic cell generation and function. Cancer Res. 2001;61:363–9.

    CAS  PubMed  Google Scholar 

  17. Lee HC, Wondimu A, Liu Y, et al. Ganglioside inhibition of CD8+ T cell cytotoxicity: interference with lytic granule trafficking and exocytosis. J Immunol. 2012;189:3521–7.

    Article  CAS  PubMed  Google Scholar 

  18. Wondimu A, Liu Y, Su Y, et al. Gangliosides drive the tumor infiltration and function of myeloid-derived suppressor cells. Cancer Res. 2014;74:5449–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jales A, Falahati R, Mari E, et al. Ganglioside-exposed dendritic cells inhibit T-cell effector function by promoting regulatory cell activity. Immunology. 2011;132:134–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Balis FM, McCully CL, Busch CM, et al. Pharmacokinetics of the disialoganglioside, G(D2), a circulating tumor biomarker for neuroblastoma, in nonhuman primates. J Circ Biomark. 2021;10:26–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cheung NK, Neely JE, Landmeier B, et al. Targeting of ganglioside GD2 monoclonal antibody to neuroblastoma. J Nucl Med. 1987;28:1577–83.

    CAS  PubMed  Google Scholar 

  22. Jin HJ, Nam HY, Bae YK, et al. GD2 expression is closely associated with neuronal differentiation of human umbilical cord blood-derived mesenchymal stem cells. Cell Mol Life Sci. 2010;67:1845–58.

    Article  CAS  PubMed  Google Scholar 

  23. Wu ZL, Schwartz E, Seeger R, et al. Expression of GD2 ganglioside by untreated primary human neuroblastomas. Cancer Res. 1986;46:440–3.

    CAS  PubMed  Google Scholar 

  24. Cheung NK, Saarinen UM, Neely JE, et al. Monoclonal antibodies to a glycolipid antigen on human neuroblastoma cells. Cancer Res. 1985;45:2642–9.

    CAS  PubMed  Google Scholar 

  25. Cheung NK, Dyer MA. Neuroblastoma: developmental biology, cancer genomics and immunotherapy. Nat Rev Cancer. 2013;13:397–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Munn DH, Cheung NK. Antibody-dependent antitumor cytotoxicity by human monocytes cultured with recombinant macrophage colony-stimulating factor. Induction of efficient antibody-mediated antitumor cytotoxicity not detected by isotope release assays. J Exp Med. 1989;170:511–26.

    Article  CAS  PubMed  Google Scholar 

  27. Munn DH, Cheung NK. Phagocytosis of tumor cells by human monocytes cultured in recombinant macrophage colony-stimulating factor. J Exp Med. 1990;172:231–7.

    Article  CAS  PubMed  Google Scholar 

  28. Cheung NK, Lazarus H, Miraldi FD, et al. Ganglioside GD2 specific monoclonal antibody 3F8: a phase I study in patients with neuroblastoma and malignant melanoma. J Clin Oncol. 1987;5:1430–40.

    Article  CAS  PubMed  Google Scholar 

  29. Cheung IY, Hsu K, Cheung NK. Activation of peripheral-blood granulocytes is strongly correlated with patient outcome after immunotherapy with anti-GD2 monoclonal antibody and granulocyte-macrophage Colony-stimulating factor. J Clin Oncol. 2012;30:426–32.

    Article  CAS  PubMed  Google Scholar 

  30. Tarek N, Le Luduec JB, Gallagher MM, et al. Unlicensed NK cells target neuroblastoma following anti-GD2 antibody treatment. J Clin Invest. 2012;122:3260–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Delgado DC, Hank JA, Kolesar J, et al. Genotypes of NK cell KIR receptors, their ligands, and Fcgamma receptors in the response of neuroblastoma patients to Hu14.18-IL2 immunotherapy. Cancer Res. 2010;70:9554–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cheung NK, Guo H, Hu J, et al. Humanizing murine IgG3 anti-GD2 antibody m3F8 substantially improves antibody-dependent cell-mediated cytotoxicity while retaining targeting in vivo. Oncoimmunology. 2012;1:477–86.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ahmed M, Cheung NK. Engineering anti-GD2 monoclonal antibodies for cancer immunotherapy. FEBS Lett. 2014;588:288–97.

    Article  CAS  PubMed  Google Scholar 

  34. Yankelevich M, Kondadasula SV, Thakur A, et al. Anti-CD3 x anti-GD2 bispecific antibody redirects T-cell cytolytic activity to neuroblastoma targets. Pediatr Blood Cancer. 2012;59:1198–205.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Xu H, Cheng M, Guo H, et al. Retargeting T cells to GD2 pentasaccharide on human tumors using bispecific humanized antibody. Cancer Immunol Res. 2015;3:266–77.

    Article  CAS  PubMed  Google Scholar 

  36. Pule MA, Savoldo B, Myers GD, et al. Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nat Med. 2008;14:1264–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Majzner RG, Ramakrishna S, Yeom KW, et al. GD2-CAR T cell therapy for H3K27M-mutated diffuse midline gliomas. Nature. 2022;603:934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cheal SM, Xu H, Guo HF, et al. Preclinical evaluation of multistep targeting of diasialoganglioside GD2 using an IgG-scFv bispecific antibody with high affinity for GD2 and DOTA metal complex. Mol Cancer Ther. 2014;13:1803–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cheung NK, Modak S, Lin Y, et al. Single-chain Fv-streptavidin substantially improved therapeutic index in multistep targeting directed at disialoganglioside GD2. J Nucl Med. 2004;45:867–77.

    CAS  PubMed  Google Scholar 

  40. Cheung NK, Heller G, Kushner BH, et al. Detection of metastatic neuroblastoma in bone marrow: when is routine marrow histology insensitive? J Clin Oncol. 1997;15:2807–17.

    Article  CAS  PubMed  Google Scholar 

  41. Welte K, Miller G, Chapman PB, et al. Stimulation of T lymphocyte proliferation by monoclonal antibodies against GD3 ganglioside. J Immunol. 1987;139:1763–71.

    Article  CAS  PubMed  Google Scholar 

  42. Xu H, Guo H, Cheung IY, et al. Antitumor efficacy of anti-GD2 IgG1 is enhanced by fc Glyco-engineering. Cancer Immunol Res. 2016;4:631–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Miraldi F. Monoclonal antibodies and neuroblastoma. Semin Nucl Med. 1989;19:282–94.

    Article  CAS  PubMed  Google Scholar 

  44. Cheung NK, Landmeier B, Neely J, et al. Complete tumor ablation with iodine 131-radiolabeled disialoganglioside GD2-specific monoclonal antibody against human neuroblastoma xenografted in nude mice. J Natl Cancer Inst. 1986;77:739–45.

    Article  CAS  PubMed  Google Scholar 

  45. Heiner JP, Miraldi F, Kallick S, et al. Localization of GD2-specific monoclonal antibody 3F8 in human osteosarcoma. Cancer Res. 1987;47:5377–81.

    CAS  PubMed  Google Scholar 

  46. Kramer K, Cheung NKV, DiResta G, et al. Pharmacokinetics and acute toxicology of intraventricular I-monoclonal antibody targeting disialoganglioside in non-human primates. J Neuro-Oncol. 1997;35:101–11.

    Article  CAS  Google Scholar 

  47. Miraldi FD, Nelson AD, Kraly C, et al. Diagnostic imaging of human neuroblastoma with radiolabeled antibody. Radiology. 1986;161:413–8.

    Article  CAS  PubMed  Google Scholar 

  48. Nelson AD, Miraldi F, Cheung NKV. Biodistribution and dosimetry of 3F8 neuroblastoma monoclonal antibody. Am J Phys. 1989;4:143–50.

    CAS  Google Scholar 

  49. Fletcher BD, Miraldi FD, Cheung NKV. Comparison of radiolabeled monoclonal antibody and magnetic resonance imaging in the detection of metastatic neuroblastoma in bone marrow: preliminary results. Pediatr Radiol. 1989;20:72–5.

    Article  CAS  PubMed  Google Scholar 

  50. Yeh SD, Larson SM, Burch L, et al. Radioimmunodetection of neuroblastoma with iodine-131-3F8: correlation with biopsy, iodine-131-metaiodobenzylguanidine and standard diagnostic modalities. J Nucl Med. 1991;32:769–76.

    CAS  PubMed  Google Scholar 

  51. Larson SM, Pentlow KS, Volkow ND, et al. PET scanning of iodine-124-3F8 as an approach to tumor dosimetry during treatment planning for radioimmunotherapy in a child with neuroblastoma. J Nucl Med. 1992;33:2020–3.

    CAS  PubMed  Google Scholar 

  52. Arbour KC, Mezquita L, Long N, et al. Impact of baseline steroids on efficacy of programmed cell Death-1 and programmed death-ligand 1 blockade in patients with non-small-cell lung cancer. J Clin Oncol. 2018;36:2872–8.

    Article  CAS  PubMed  Google Scholar 

  53. Dauer LT, St Germain J, Williamson MJ, et al. Whole-body clearance kinetics and external dosimetry of 131I-3F8 monoclonal antibody for radioimmunotherapy of neuroblastoma. Health Phys. 2007;92:33–9.

    Article  CAS  PubMed  Google Scholar 

  54. Larson SM, Divgi C, Sgouros G, et al. Monoclonal antibodies: basic prniciples – radioisotope conjugates. In: DeVita VT, Hellman S, Rosenberg SA, editors. Biologic therapy of cancer – principles and practice. Philadelphia: J.B. Lippincott Co.; 2000. p. 396–412.

    Google Scholar 

  55. Kramer K, Humm JL, Souweidane MM, et al. Phase I study of targeted radioimmunotherapy for leptomeningeal cancers using intra-Ommaya 131-I-3F8. J Clin Oncol. 2007;25:5465–70.

    Article  PubMed  Google Scholar 

  56. Bergman I, Pohl CR, Venkataramanan R, et al. Intrathecal administration of an anti-ganglioside antibody results in specific accumulation within meningeal neoplastic xenografts in nude rats. J Immunother. 1999;22:114–23.

    Article  CAS  PubMed  Google Scholar 

  57. Lv Y, Cheung NK, Fu BM. A pharmacokinetic model for radioimmunotherapy delivered through cerebrospinal fluid for the treatment of leptomeningeal metastases. J Nucl Med. 2009;50:1324–31.

    Article  PubMed  Google Scholar 

  58. He P, Kramer K, Smith-Jones P, et al. Two-compartment model of radioimmunotherapy delivered through cerebrospinal fluid. Eur J Nucl Med Mol Imaging. 2011;38:334–42.

    Article  PubMed  Google Scholar 

  59. Kramer K, Pandit-Taskar N, Humm JL, et al. A phase II study of radioimmunotherapy with intraventricular 131 I-3F8 for medulloblastoma. Pediatr Blood Cancer. 2017;65 https://doi.org/10.1002/pbc.26754.

  60. Kramer K, Pandit-Taskar N, Zanzonico P, et al. Low incidence of radionecrosis in children treated with conventional radiation therapy and intrathecal radioimmunotherapy. J Neuro-Oncol. 2015;123:245–9.

    Article  CAS  Google Scholar 

  61. Larson SM, Carrasquillo JA, Cheung NK, et al. Radioimmunotherapy of human tumours. Nat Rev Cancer. 2015;15:347–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cheng M, Santich BH, Xu H, et al. Successful engineering of a highly potent single-chain variable-fragment (scFv) bispecific antibody to target disialoganglioside (GD2) positive tumors. Onco Targets Ther. 2016;5:e1168557.

    Google Scholar 

  63. Santich BH, Cheal SM, Ahmed M, et al. A self-assembling and disassembling (SADA) bispecific antibody (BsAb) platform for curative two-step Pretargeted Radioimmunotherapy. Clin Cancer Res. 2021;27:532–41.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We want to thank Dr. Floro D. Miraldi, Dr. Dennis Nelson, Ms., Bonnie Landmeier, and Dr. Ulla Saarinen of Case Western Reserve University; Dr. Samuel D.J. Yeh, Ms. Hongfen Guo, Dr. John L. Humm, Dr. Keith S. Pentlow, Dr. Pat Zanzonico, Dr. Lawrence T. Dauer, Dr. Jason Lewis, Dr. Serge K. Lyaschenko of Memorial Sloan Kettering Cancer Center; and the dedicated nurses, physicians, and technicians at both institutions. We also want to thank Dr. Irene Cheung and Joe Olechnowicz for their expert editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nai-Kong V. Cheung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cheung, NK.V. et al. (2023). Case Study #2: Disialoganglioside GD2 as a Target for Radiopharmaceutical Therapy. In: Bodei, L., Lewis, J.S., Zeglis, B.M. (eds) Radiopharmaceutical Therapy. Springer, Cham. https://doi.org/10.1007/978-3-031-39005-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39005-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39004-3

  • Online ISBN: 978-3-031-39005-0

  • eBook Packages: Biomedical and Life Sciences

Publish with us

Policies and ethics