Skip to main content

Sensing Renal Nerve Activity Before, During and After Denervation: SyMap

  • Chapter
  • First Online:
Renal Denervation
  • 91 Accesses

Abstract

The safety and efficacy of renal denervation (RDN) for the treatment of hypertension have been repeatedly confirmed by several studies. However, an approximately 30% non-responder rate was consistently observed among various energy-based RDN concepts. This phenomenon might result from non-selective, global RDN. In this context, it is important to mention that different nerve types are located surrounding the renal artery some of which may cause a blood pressure increase but others may have no impact on the blood pressure or even cause a blood pressure reduction. Hence, depending on the nerve type injured during denervation, favorable, neutral or detrimental effects on blood pressure may be the consequence. Thus, mapping renal nerves before denervation to identify areas of denervation that may be more likely associated with a blood pressure reduction and selective sympathetic denervation followed by repeat mapping after denervation to determine if therapy has been successful is an urgent/unmet clinical need. Results of recent studies demonstrated anatomical, physiological and histological evidence to support a concept of renal electronic stimulation as a tool for renal mapping and selective denervation. Using renal stimulation, we should be able to identify proper sites for RDN, monitor the effects of RDN and confirm an effective RDN before, during and after the procedure, respectively. With a newly developed renal mapping/selective denervation system, we are conducting a pivotal trial to test the safety and efficacy of selective renal sympathetic denervation to treat uncontrolled hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smithwick RH, Thompson JE. Splanchnicectomy for essential hypertension: results in 1,266 cases. J Am Med Assoc. 1953;152(16):1501–4.

    Article  CAS  PubMed  Google Scholar 

  2. Khera R, Lu Y, Lu J, Saxena A, Nasir K, Jiang L, Krumholz HM. Impact of 2017 ACC/AHA guidelines on prevalence of hypertension and eligibility for antihypertensive treatment in United States and China: nationally representative cross sectional study. Br Med J. 2018;362:k2357.

    Article  Google Scholar 

  3. Williams B, Mancia G, Spiering W, Rosei EA, Azizi M, Burnier M, Clement DL, Coca A, Simone G, Dominiczak A, Kahan T, Mahfoud F, Redon J, Ruilope L, Zanchetti A, Kerins M, Kjeldsen SE, Kreutz R, Laurent S, Lip GYH, McManus R, Narkiewicz K, Ruschitzka F, Schmieder RE, Shlyakhto E, Tsioufis C, Aboyans V, Desormais L. 2018 ESC/ ESH Guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European Society of Cardiology (ESC) and the European Society of Hypertension (ESH). J Hypertens. 2018;36(10):1953–2050.

    Article  CAS  PubMed  Google Scholar 

  4. Wang Z, Chen Z, Zhang L, Wang X, Hao G, Zhang Z, Shao L, Tian Y, Dong Y, Zheng C, Wang J, Zhu M, Weintraub WS, Gao R. Status of Hypertension in China: Results from the China Hypertension Survey, 2012–2015. Circulation. 2018;137(22):2344–56.

    Article  PubMed  Google Scholar 

  5. Krum H, Schlaich M, Whitbourn R, Sobotka PA, Sadowski J, Bartus K, Kapelak B, Walton A, Sievert H, Thambar S, Abraham WT, Esler M. Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet. 2009;373(9671):1275–81.

    Article  PubMed  Google Scholar 

  6. Kandzari DE, Böhm M, Mahfoud F, Townsend RR, Weber MA, Pocock S, Tsioufis K, Tousoulis D, Choi JW, East C, Brar S, Cohen SA, Fahy M, Pilcher G, Kario K, on behalf of the SPYRAL HTN-ON MED Trial Investigators, SPYRAL HTN-ON MED Trial Investigators. Effect of renal denervation on blood pressure in the presence of antihypertensive drugs: 6-month efficacy and safety results from the SPYRAL HTN-ON MED proof-of-concept randomized trial. Lancet. 2018;391(10137):2346–55.

    Article  PubMed  Google Scholar 

  7. Azizi M, Sapoval M, Gosse P, Monge M, Bobrie G, Delsart P, Midulla M, Mounier-Véhier C, Courand PY, Lantelme P, Denolle T, Dourmap-Collas C, Trillaud H, Pereira H, Plouin PF, Chatellier G, Denervation R, for Hypertension (DENERHTN) investigators. Optimum and stepped care standardised antihypertensive treatment with or without renal denervation for resistant hypertension (DENERHTN): a multicentre, open-label, randomized controlled trial. Lancet. 2015;385(9981):1957–65.

    Article  PubMed  Google Scholar 

  8. Fengler K, Rommel KP, Blazek S, Besler C, Hartung P, von Roeder M, Petzold M, Winkler S, Höllriegel R, Desch S, Thiele H, Lurz P. A three-arm randomized trial of different renal denervation devices and techniques in patients with resistant hypertension (RADIOSOUND-HTN). Circulation. 2019;139(5):590–600.

    Article  PubMed  Google Scholar 

  9. Townsend RR, Mahfoud F, Kandzari DE, Kario K, Pocock S, Weber MA, Ewen S, Tsioufis K, Tousoulis D, Sharp ASP, Watkinson AF, Schmieder RE, Schmid A, Choi JW, East C, Walton A, Hopper I, Cohen DL, Wilensky R, Lee DP, Ma A, Devireddy CM, Lea JP, Lurz PC, Fengler K, Davies J, Chapman N, Cohen SA, DeBruin V, Fahy M, Jones DE, Rothman M, Böhm M, on behalf of the SPYRAL HTN-OFF MED trial investigators. Catheter-based renal denervation in patients with uncontrolled hypertension in the absence of antihypertensive medications (SPYRAL HTN-OFF MED): a randomised, sham-controlled, proof-of-concept trial. Lancet. 2017;390(10108):2160–70.

    Article  PubMed  Google Scholar 

  10. Bohm M, Kario K, Kandzari D, Mahfoud F, Weber MA, Schmieder RE, Tsioufis K, Pocock S, Konstantinidis D, Choi JW, East C, Lee DP, Ma A, Ewen S, Cohen DL, Wilensky R, Devireddy CM, Lea J, Schmid A, Weil J, Agdirlioglu T, Reedus D, Jefferson BK, Reyes D, D’Souza R, Sharp ASP, Sharif F, Fahy M, DeBruin V, Cohen SA, Brar S, Townsend RR, on behalf of the SPYRAL HTN-OFF MED Pivotal Investigators. Efficacy of catheter-based renal denervation in the absence of antihypertensive medications (SPYRAL HTN-OFF MED Pivotal): a multicentre, randomized, sham-controlled trial. Lancet. 2020;395(10234):1444–51.

    Article  PubMed  Google Scholar 

  11. Bhatt DL, Kandzari DE, O'Neill WW, D'Agostino R, Flack JM, Katzen BT, Leon MB, Liu M, Mauri L, Mauri L, Negoita M, Cohen SA, Oparil S, Rocha-Singh K, Townsend RR, Bakris GL, for the SYMPLICITY HTN-3 Investigators. A controlled trial of renal denervation for resistant hypertension. N Engl J Med. 2014;370(15):1393–401.

    Article  CAS  PubMed  Google Scholar 

  12. Kiuchi MG, Esler MD, Fink GD, Osborn JW, Banek CT, Bohm M, Denton KM, DiBina GF, Everett TH IV, Grassi G, Katholi RE, Knuepfer MM, Kopp UC, Lefer DJ, Lohmeier TE, May CN, Mahfoud F, Paton JFR, Schmieder RE, Pellegrino PR, Sharabi Y, Schlaich MP. Renal denervation update from the international sympathetic nervous system summit: JACC State-of-the-Art review. J Am Coll Cardiol. 2019;73(23):3006–17.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Townsend RR, Soborka PA. Catheter-based renal denervation for hypertension. Curr Hypertens Rep. 2018;20(11):93.

    Article  PubMed  Google Scholar 

  14. Mahfoud F, Renkin J, Sievert H, Bertog S, Ewen S, Bohm M, Lengele JP, Wojakowski W, Schmieder R, Giet M, Parise H, Haratani N, Pathak A, Persu A. Alcohol-mediated renal denervation using the Peregrine system infusion catheter for treatment of hypertension. JACC Cardiovasc Interv. 2020;13(4):471–84.

    Article  PubMed  Google Scholar 

  15. Murray E. Illusions of truths in the Symplicity HTN-3 trial: generic design strengths but neuroscience failings. J Am Soc Hypertens. 2014;8(8):593–8.

    Article  Google Scholar 

  16. van Amsterdam WA, Blankestijn PJ, Goldschmeding R, Bleys RL. The morphological substrate for renal denervation: nerve distribution patterns and parasympathetic nerves. A post-mortem histological study. Ann Anat. 2016;204:71–9.

    Article  PubMed  Google Scholar 

  17. Mompeo B, Maranillo E, Garcia-Touchard A, Larkin T, Sanudo J. The gross anatomy of the renal sympathetic nerves revisited. Clin Anat. 2016;29(5):660–4.

    Article  PubMed  Google Scholar 

  18. Fudim M, Sobotka AA, Yin YH, Wang JW, Levin H, Esler M, Wang J, Sobotka PA. Selective vs. Global Renal Denervation: a Case for Less Is More. Curr Hypertens Rep. 2018;20(5):37.

    Article  PubMed  Google Scholar 

  19. Tan K, Lai Y, Chen W, Liu H, Xu Y, Li Y, Zhou H, Song W, Wang J, Woo K, Yin Y. Selective renal denervation guided by renal nerve stimulation: mapping renal nerves for unmet clinical needs. J Hum Hypertens. 2019;33(10):716–24.

    Article  PubMed  Google Scholar 

  20. Liu H, Chen W, Lai Y, Du H, Wang Z, Xu Y, Ling Z, Fan J, Xiao P, Zhang B, Wang J, Gyawali L, Zrenner B, Woo K, Yin Y. Selective renal Denervation guided by renal nerve stimulation in canine: a method for identification of optimal ablation target. Hypertension. 2019;74(3):536–45.

    Article  CAS  PubMed  Google Scholar 

  21. Chinushi M, Izumi D, Kenichi I, Suzuki K, Furushima H, Saitoh O, Furuta Y, Aizawa Y, Iwafuchi M. Blood pressure and autonomic responses to electrical stimulation of the renal arterial nerves before and after ablation of the renal artery. Hypertension. 2013;61(2):450–6.

    Article  CAS  PubMed  Google Scholar 

  22. Chinushi M, Suzuki K, Saitoh O, Furushima H, Iijima K, Izumi D, Sato A, Sugai M, Iwafuchi M. Electrical stimulation-based evaluation for functional modification of renal autonomic nerve activities induced by catheter ablation. Heart Rhythm. 2016;13(8):1707–15.

    Article  PubMed  Google Scholar 

  23. Tsioufis C, Dimitriadis K, Tsioufis P, Patras R, Papadoliopoulou M, Petropoulou Z, Konstantinidis D, Tousoulis D. ConfidenHTâ„¢ System for diagnostic mapping of renal nerves. Curr Hypertens Rep. 2018;20(6):49.

    Article  PubMed  Google Scholar 

  24. Hilbert S, Kosiuk J, Hindricks G, Bollmann A. Blood pressure and autonomic responses to electrical stimulation of the renal arterial nerves before and after ablation of the renal artery. Int J Cardiol. 2014;177(2):669–71.

    Article  PubMed  Google Scholar 

  25. Sakakura K, Ladich E, Cheng Q, Otsuka F, Yahagi K, Fowler DR, Kolodgie FD, Virmani R, Joner M. Anatomic assessment of sympathetic peri-arterial renal nerves in man. J Am Coll Cardiol. 2014;64(7):635–43.

    Article  PubMed  Google Scholar 

  26. Lu J, Wang Z, Zhou T, Chen S, Chen W, Du H, Tan Z, Yang H, Hu X, Liu C, Ling Z, Liu Z, Zrenner B, Woo K, Yin Y. Selective proximal renal denervation guided by autonomic responses evoked via high-frequency stimulation in a preclinical canine model. Circ Cardiovasc Interv. 2015;8(6):e001847.

    Article  PubMed  Google Scholar 

  27. Wang J. Mapping sympathetic nerve distribution for renal ablation and catheters for same. US Patent 8702619, published on Dec 15, 2011 and issued on April 22, 2014.

    Google Scholar 

  28. Weber MA, Kirtane A, Mauri L, Townsend RR, Kandzari DE, Leon MB. Renal denervation for the treatment of hypertension: making a new start, getting it right. Clin Cardiol. 2015;38(8):447–54.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sobotka P, Levin H, Yin YH, Wang J. Renal afferent nerve mapping and selective denervation. CRT 2017. Early experience with renal nerve stimulation guided renal denervation.

    Google Scholar 

  30. Wang J and Yin YH. TCT 2019. Hypertension therapies: renal denervation and beyond. Session III: Procedural aspects and indications beyond hypertension. Sensing renal nerve activity before, during, and after denervation II: Symap.

    Google Scholar 

  31. Tsioufis C. ConfidentHT system safety and performance of diagnostic electrical mapping of renal nerves in hypertensive patients and/or potential candidates for a renal sympathetic denervation (RDN) procedure. PCR 2017. Early experience with renal nerve stimulation guided renal denervation.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Wang .

Editor information

Editors and Affiliations

Ethics declarations

J. Wang is a co-founder of SyMap Medical (Suzhou), Ltd., China.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, J., Yin, YH., Wang, Y., Ma, W., Chen, W. (2023). Sensing Renal Nerve Activity Before, During and After Denervation: SyMap. In: Heuser, R.R., Schlaich, M.P., Hering, D., Bertog, S.C. (eds) Renal Denervation. Springer, Cham. https://doi.org/10.1007/978-3-031-38934-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-38934-4_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-38933-7

  • Online ISBN: 978-3-031-38934-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics