Skip to main content

Narrative Review on the Application of Additive Manufacturing in the Production of Upper Limb Orthoses

  • Chapter
  • First Online:
Current Trends in Biomedical Engineering

Abstract

The development of upper limb orthoses using additive manufacturing technology, also known as 3D printing, holds significant potential to enhance accessibility, availability, customization, and user acceptance of the devices. This manufacturing method offers advantages over conventional production methods, such as greater design freedom. 3D printing creates complex and customized geometries perfectly tailored to medical needs and individual user preferences. This technology results in orthoses that are more comfortable and aesthetically pleasing. Additionally, customization allows for creating bespoke orthoses for each user, considering specific anatomical characteristics. Moreover, additive manufacturing allows for rapid iteration and modification in orthosis design, facilitating a more agile and enhanced development process. Prototypes can be produced and tested quickly, with reduced manufacturing time and cost. The application of additive manufacturing in developing upper limb orthoses has tremendous potential to improve accessibility, availability, customization, and user acceptance. However, 3D modeling of a custom orthosis requires specific expertise, software, and equipment that limit the production of printed orthoses. Additive manufacturing is not ideal as a large-scale production method for orthoses because the final cost is similar to orthoses made from thermoplastic plates, and the production time is longer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Bandyopadhyay, A., Bose, S., Das, & S. (2015). 3D printing of biomaterials. MRS bulletin, 40, 108–115.

    Google Scholar 

  • Baronio, G., Harran, S., & Signoroni, A. (2016). A critical analysis of a hand orthosis reverse engineering and 3D printing process. Applied bionics and biomechanics, 2016.

    Google Scholar 

  • Bourell, D. (2012, October). Evaluation of a digitised splinting approach with multi-material functionality using Additive Manufacturing Technologies. In Twenty-Third Annual International Solid Freeform Fabrication Symposium. University of Texas at Austin.

    Google Scholar 

  • Cano, A. P. D. (2017). Parametrização e produção de órtese termomoldável para imobilização de punho produzida por manufatura aditiva. 102p. Trabalho de Conclusão de Curso de Engenharia Biomédica (TCC)-Universidade Federal de São Paulo.

    Google Scholar 

  • Chae, D. S., Kim, D. H., Kang, K. Y., Kim, D. Y., Park, S. W., Park, S. J., & Kim, J. H. (2020). The functional effect of 3D-printing individualized orthosis for patients with peripheral nerve injuries: Three case reports. Medicine, 99(16).

    Google Scholar 

  • Chang, K., Chang, J. H., Huang, M. W., & Lee, L. Y. (2018, April). Innovative orthosis for phalanx extension neurofacilitation (iOPEN)—development of a 3D-printed hand orthosis for chronic stroke patient. In 2018 IEEE International Conference on Applied System Invention (ICASI) (pp. 1175–1177). IEEE.

    Google Scholar 

  • Chen, R. K., Jin, Y. A., Wensman, J., & Shih, A. (2016). Additive manufacturing of custom orthoses and prostheses—A review. Additive manufacturing, 12, 77–89.

    Article  Google Scholar 

  • Chen, Y. J., Lin, H., Zhang, X., Huang, W., Shi, L., & Wang, D. (2017). Application of 3D–printed and patient-specific cast for the treatment of distal radius fractures: initial experience. 3D Printing in Medicine, 3, 1–9.

    Google Scholar 

  • Chen, Y., Lin, H., Yu, Q., Zhang, X., Wang, D., Shi, L., … & Zhong, S. (2020). Application of 3D-printed orthopedic cast for the treatment of forearm fractures: finite element analysis and comparative clinical assessment. BioMed Research International, 2020.

    Google Scholar 

  • Chu, C., Wang, I. J., Sun, J. R. & Liu, C. H. (2020). Customized designs of short thumb orthoses using 3D hand parametric models. Assistive Technology, 1–8.

    Google Scholar 

  • Dawoud, M., Taha, I., & Ebeid, S. J. (2016). Mechanical behaviour of ABS: An experimental study using FDM and injection moulding techniques. Journal of manufacturing Processes, 21, 39–45.

    Article  Google Scholar 

  • Dudley, D. R., Knarr, B. A., Siu, K. C., Peck, J., Ricks, B., & Zuniga, J. M. (2021). Testing of a 3D printed hand exoskeleton for an individual with stroke: A case study. Disability and Rehabilitation: Assistive Technology, 16(2), 209–213.

    Google Scholar 

  • Francisco, N. P. F. (2004). Avaliação das características de três materiais de baixo custo utilizados na confecção de órtese para estabilização de punho. Dissertação - (Mestrado em Engenharia Biomédica) - Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraíba.

    Google Scholar 

  • Freeland, A. E., Hardy, M. A., & Singletary, S. (2003). Rehabilitation for proximal phalangeal fractures. Journal of Hand Therapy, 16(2), 129–142.

    Google Scholar 

  • Gebhardt, A. (2011). Understanding additive manufacturing. Hanser Publications.

    Google Scholar 

  • Gibson, I., Rosen, D. W., Stucker, B. Khorasani, M., Rosen, D., Stucker, B., & Khorasani, M. (2021). Additive manufacturing technologies. Cham, Switzerland: Springer.

    Google Scholar 

  • Graham, J., Wang, M., Frizzell, K., Watkins, C., Beredjiklian, P., & Rivlin, M. (2020). Conventional vs 3-dimensional printed cast wear comfort. Hand, 15(3), 388–392.

    Article  Google Scholar 

  • Han, J. J., & Huang, H. (2011). Preparation and characterization of biodegradable polylactide/thermoplastic polyurethane elastomer blends. Journal of Applied Polymer Science, 120(6), 3217–3223.

    Google Scholar 

  • Herr, H. (2009). Exoskeletons and orthoses: classification, design challenges and future directions. Journal of neuroengineering and rehabilitation, 6, 1–9.

    Google Scholar 

  • Jacobs, M. A., & Austin, N. (2003). Splinting the hand and upper extremity: principles and process. Lippincott Williams & Wilkins.

    Google Scholar 

  • Kadioglu, E., Aydin, H. E., Kaya, I., Aydin, N., & Sahin, M. C. (2019). Manufacturing and application of personal hand and finger splint with three dimensional printer technology following hand and finger trauma.

    Google Scholar 

  • Kalita, B., Narayan, J., & Dwivedy, S. K. (2021). Development of active lower limb robotic-based orthosis and exoskeleton devices: a systematic review. International Journal of Social Robotics, 13, 775–793.

    Google Scholar 

  • Kim, S. J., Kim, S. J., Cha, Y. H., Lee, K. H., & Kwon, J. Y. (2018). Effect of personalized wrist orthosis for wrist pain with three-dimensional scanning and printing technique: a preliminary, randomized, controlled, open-label study. Prosthetics and orthotics international, 42(6), 636–643.

    Article  Google Scholar 

  • Lay, M., Thajudin, N. L. N., Hamid, Z. A. A., Rusli, A., Abdullah, M. K., & Shuib, R. K. (2019). Comparison of physical and mechanical properties of PLA, ABS and nylon 6 fabricated using fused deposition modeling and injection molding. Composites Part B: Engineering, 176, 107341.

    Article  Google Scholar 

  • Lee, K. H., Kim, D. K., Cha, Y. H., Kwon, J. Y., Kim, D. H., & Kim, S. J. (2019). Personalized assistive device manufactured by 3D modelling and printing techniques. Disability and Rehabilitation: Assistive Technology, 14(5), 526–531.

    Google Scholar 

  • Li, J., & Tanaka, H. (2018). Rapid customization system for 3D-printed splint using programmable modeling technique–a practical approach. 3D printing in medicine, 4(1), 1–21.

    Google Scholar 

  • Lunsford, C., Grindle, G., Salatin, B., & Dicianno, B. E. (2016). Innovations with 3-dimensional printing in physical medicine and rehabilitation: a review of the literature. Pm&r, 8(12), 1201–1212.

    Article  Google Scholar 

  • Miclaus, R., Repanovici, A., & Roman, N. (2017). Biomaterials: Polylactic acid and 3D printing processes for orthosis and prosthesis. Materiale plastice, 54(1), 98–102.

    Article  Google Scholar 

  • Nam, H. S., Seo, C. H., Joo, S. Y., Kim, D. H., & Park, D. S. (2018). The application of three-dimensional printed finger splints for post hand burn patients: a case series investigation. Annals of Rehabilitation Medicine, 42(4), 634–638.

    Article  Google Scholar 

  • O'brien, V. H., & Thurn, J. (2013). A simple distal radioulnar joint orthosis. Journal of Hand Therapy, 26(3), 287–290.

    Google Scholar 

  • Oksman, K., Skrifvars, M., & Selin, J.F. (2003). Natural fibers as reinforcement in polylactic acid (PLA) composites. Composite Science Technology, 1317–1324.

    Google Scholar 

  • Palousek, D., Rosicky, J., Koutny, D., Stoklásek, P., & Navrat, T. (2014). Pilot study of the wrist orthosis design process. Rapid prototyping journal, 20(1), 27–32.

    Article  Google Scholar 

  • Popescu, D., Zapciu, A., Tarba, C., & Laptoiu, D. (2020). Fast production of customized three-dimensional-printed hand splints. Rapid Prototyping Journal, 26(1), 134–144.

    Article  Google Scholar 

  • Portnova, A. A., Mukherjee, G., Peters, K. M., Yamane, A., & Steele, K. M. (2018). Design of a 3D-printed, open-source wrist-driven orthosis for individuals with spinal cord injury. PloS one, 13(2), e0193106.

    Article  Google Scholar 

  • Portnoy, S., Barmin, N., Elimelech, M., Assaly, B., Oren, S., Shanan, R., & Levanon, Y. (2020). Automated 3D-printed finger orthosis versus manual orthosis preparation by occupational therapy students: Preparation time, product weight, and user satisfaction. Journal of Hand Therapy, 33(2), 174–179.

    Article  Google Scholar 

  • Sarı, M. İ., Şahin, İ., Gökçe, H., & Öksüz, Ç. (2020). Ring orthosis design and production by rapid prototyping approach. Journal of Hand Therapy, 33(2), 170–173.

    Article  Google Scholar 

  • Spaulding, S. E., Yamane, A., McDonald, C. L., & Spaulding, S. A. (2019). A conceptual framework for orthotic and prosthetic education. Prosthetics and Orthotics International, 43(4), 369–381.

    Google Scholar 

  • Toth, L., Schiffer, A., Nyitrai, M., Pentek, A., Told, R., & Maroti, P. (2020). Developing an anti-spastic orthosis for daily home-use of stroke patients using smart memory alloys and 3D printing technologies. Materials & Design, 195, 109029.

    Article  Google Scholar 

  • Wang, K., Shi, Y., He, W., Yuan, J., Li, Y., Pan, X., & Zhao, C. (2018). The research on 3D printing fingerboard and the initial application on cerebral stroke patient’s hand spasm. Biomedical engineering online, 17, 1–14.

    Article  Google Scholar 

  • Wong, J. Y. (2015). On-site 3D printing of functional custom mallet splints for Mars analogue crewmembers. Aerospace medicine and human performance, 86(10), 911–914.

    Article  Google Scholar 

  • Wong, K. V., & Hernandez, A. (2012). A review of additive manufacturing. International scholarly

    Google Scholar 

  • Yan, W., Ding, M., Kong, B., Xi, X., & Zhou, M. (2019). Lightweight splint design for individualized treatment of distal radius fracture. Journal of medical systems, 43, 1–10.

    Article  Google Scholar 

  • Zhang, Z., Demir, K. G., & Gu, G. X. (2019). Developments in 4D-printing: a review on current smart materials, technologies, and applications. International Journal of Smart and Nano Materials, 10(3), 205–224.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Elizete Kunkel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kunkel, M.E., Araújo, A.C.C. (2023). Narrative Review on the Application of Additive Manufacturing in the Production of Upper Limb Orthoses. In: Lombello, C.B., da Ana, P.A. (eds) Current Trends in Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-38743-2_4

Download citation

Publish with us

Policies and ethics