Skip to main content

Liquid Biopsies for Pancreatic Cancer: Is It Ready for Prime Time?

  • Chapter
  • First Online:
Pancreatic Cancer
  • 185 Accesses

Abstract

The natural history of pancreatic ductal adenocarcinoma (PDAC) is characterized by late diagnosis, spatiotemporal heterogeneity, relative chemoresistance, and paucity of actionable therapeutic targets. Attempts to therapeutically target vulnerabilities in the PDAC somatic genome using tissue-based testing have been successful only in 8–15% of patients with well-defined driver alterations. There is an urgent, unmet need to develop scalable somatic assays that are prognostic and/or predictive—with high sensitivity and specificity. Conceptually, liquid biopsies offer a relatively non-invasive strategy for (1) cancer screening, (2) quantitative and qualitative monitoring of minimal residual disease (MRD), and (3) characterization of tumor clonal evolution as well as spatiotemporal heterogeneity—thus circumventing major limitations of tissue-based molecular profiling. However, liquid biopsies have not yet become a part of routine clinical practice due to several inherent limitations. This chapter describes the currently available liquid biopsy techniques, their role in detection, diagnosis, surveillance, and treatment of pancreatic ductal adenocarcinoma, and possible future applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vincent A, et al. Pancreatic cancer. Lancet. 2011;378(9791):607–20.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):17–48.

    Article  PubMed  Google Scholar 

  3. Villatoro S, et al. Prospective detection of mutations in cerebrospinal fluid, pleural effusion, and ascites of advanced cancer patients to guide treatment decisions. Mol Oncol. 2019;13(12):2633–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yamaguchi Y, et al. Detection of mutations of p53 tumor suppressor gene in pancreatic juice and its application to diagnosis of patients with pancreatic cancer: comparison with K-ras mutation. Clin Cancer Res. 1999;5(5):1147–53.

    CAS  PubMed  Google Scholar 

  5. McDonald DM, Baluk P. Significance of blood vessel leakiness in cancer. Cancer Res. 2002;62(18):5381–5.

    CAS  PubMed  Google Scholar 

  6. Książkiewicz M, Markiewicz A, Zaczek AJ. Epithelial-mesenchymal transition: a hallmark in metastasis formation linking circulating tumor cells and cancer stem cells. Pathobiology. 2012;79(4):195–208.

    Article  PubMed  Google Scholar 

  7. Steinert G, et al. Immune escape and survival mechanisms in circulating tumor cells of colorectal cancer. Cancer Res. 2014;74(6):1694–704.

    Article  CAS  PubMed  Google Scholar 

  8. Cooke NM, et al. Aspirin and P2Y12 inhibition attenuate platelet-induced ovarian cancer cell invasion. BMC Cancer. 2015;15:627.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Samandari M, et al. Liquid biopsies for management of pancreatic cancer. Transl Res. 2018;201:98–127.

    Article  PubMed  Google Scholar 

  10. Hong Y, Fang F, Zhang Q. Circulating tumor cell clusters: what we know and what we expect (Review). Int J Oncol. 2016;49(6):2206–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yu M, et al. Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science. 2013;339(6119):580–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kallergi G, et al. Evaluation of isolation methods for circulating tumor cells (CTCs). Cell Physiol Biochem. 2016;40(3-4):411–9.

    Article  CAS  PubMed  Google Scholar 

  13. Ozkumur E, et al. Inertial focusing for tumor antigen-dependent and -independent sorting of rare circulating tumor cells. Sci Transl Med. 2013;5(179):179ra47.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yu J, et al. Pancreatic circulating tumor cell detection by targeted single-cell next-generation sequencing. Cancer Lett. 2020;493:245–53.

    Article  CAS  PubMed  Google Scholar 

  15. Lee JS, et al. Liquid biopsy in pancreatic ductal adenocarcinoma: current status of circulating tumor cells and circulating tumor DNA. Mol Oncol. 2019;13(8):1623–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Parpart-Li S, et al. The effect of preservative and temperature on the analysis of circulating tumor DNA. Clin Cancer Res. 2017;23(10):2471–7.

    Article  CAS  PubMed  Google Scholar 

  17. Underhill HR, et al. Fragment length of circulating tumor DNA. PLoS Genet. 2016;12(7):e1006162.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Diaz LA Jr, Bardelli A. Liquid biopsies: genotyping circulating tumor DNA. J Clin Oncol. 2014;32(6):579–86.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Parikh AR, et al. Liquid versus tissue biopsy for detecting acquired resistance and tumor heterogeneity in gastrointestinal cancers. Nat Med. 2019;25(9):1415–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Park G, et al. Utility of targeted deep sequencing for detecting circulating tumor DNA in pancreatic cancer patients. Sci Rep. 2018;8(1):11631.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sugimori M, et al. Quantitative monitoring of circulating tumor DNA in patients with advanced pancreatic cancer undergoing chemotherapy. Cancer Sci. 2020;111(1):266–78.

    Article  CAS  PubMed  Google Scholar 

  22. Zill OA, et al. Cell-free DNA next-generation sequencing in pancreatobiliary carcinomas. Cancer Discov. 2015;5(10):1040–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Newman AM, et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med. 2014;20(5):548–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pécuchet N, et al. Analysis of base-position error rate of next-generation sequencing to detect tumor mutations in circulating DNA. Clin Chem. 2016;62(11):1492–503.

    Article  PubMed  Google Scholar 

  25. Dong J, et al. Advances in targeted therapy and immunotherapy for non-small cell lung cancer based on accurate molecular typing. Front Pharmacol. 2019;10:230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang Z, et al. Assessment of blood tumor mutational burden as a potential biomarker for immunotherapy in patients with non-small cell lung cancer with use of a next-generation sequencing cancer gene panel. JAMA Oncol. 2019;5(5):696–702.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Eads CA, et al. MethyLight: a high-throughput assay to measure DNA methylation. Nucleic Acids Res. 2000;28(8):E32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Moran S, et al. Epigenetic profiling to classify cancer of unknown primary: a multicentre, retrospective analysis. Lancet Oncol. 2016;17(10):1386–95.

    Article  PubMed  Google Scholar 

  29. Swanson E, et al. Simultaneous trimodal single-cell measurement of transcripts, epitopes, and chromatin accessibility using TEA-seq. Elife. 2021;10:e63632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xu W, et al. A plate-based single-cell ATAC-seq workflow for fast and robust profiling of chromatin accessibility. Nat Protoc. 2021;16(8):4084–107.

    Article  CAS  PubMed  Google Scholar 

  31. Shen SY, et al. Sensitive tumour detection and classification using plasma cell-free DNA methylomes. Nature. 2018;563(7732):579–83.

    Article  CAS  Google Scholar 

  32. Guler GD, et al. Detection of early stage pancreatic cancer using 5-hydroxymethylcytosine signatures in circulating cell free DNA. Nat Commun. 2020;11(1):5270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. San Lucas FA, et al. Minimally invasive genomic and transcriptomic profiling of visceral cancers by next-generation sequencing of circulating exosomes. Ann Oncol. 2016;27(4):635–41.

    Article  CAS  PubMed  Google Scholar 

  34. Marrugo-Ramírez J, Mir M, Samitier J. Blood-based cancer biomarkers in liquid biopsy: a promising non-invasive alternative to tissue biopsy. Int J Mol Sci. 2018;19(10):2877.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Erb U, Zöller M. Progress and potential of exosome analysis for early pancreatic cancer detection. Expert Rev Mol Diagn. 2016;16(7):757–67.

    Article  CAS  PubMed  Google Scholar 

  36. Klein AP. Pancreatic cancer epidemiology: understanding the role of lifestyle and inherited risk factors. Nat Rev Gastroenterol Hepatol. 2021;18(7):493–502.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Goggins M, et al. Management of patients with increased risk for familial pancreatic cancer: updated recommendations from the International Cancer of the Pancreas Screening (CAPS) Consortium. Gut. 2020;69(1):7–17.

    Article  CAS  PubMed  Google Scholar 

  38. Canto MI, et al. Frequent detection of pancreatic lesions in asymptomatic high-risk individuals. Gastroenterology. 2012;142(4):796–804; quiz e14–5.

    Article  PubMed  Google Scholar 

  39. Zhu Y, et al. Diagnostic value of various liquid biopsy methods for pancreatic cancer: a systematic review and meta-analysis. Medicine (Baltimore). 2020;99(3):e18581.

    Article  PubMed  Google Scholar 

  40. Cohen JD, et al. Combined circulating tumor DNA and protein biomarker-based liquid biopsy for the earlier detection of pancreatic cancers. Proc Natl Acad Sci U S A. 2017;114(38):10202–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Campos-Carrillo A, et al. Circulating tumor DNA as an early cancer detection tool. Pharmacol Ther. 2020;207:107458.

    Article  CAS  PubMed  Google Scholar 

  42. Genovese G, et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med. 2014;371(26):2477–87.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Jaiswal S, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med. 2014;371(26):2488–98.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Hu Y, et al. False-positive plasma genotyping due to clonal hematopoiesis. Clin Cancer Res. 2018;24(18):4437–43.

    Article  CAS  PubMed  Google Scholar 

  45. Sefrioui D, et al. Diagnostic value of CA19.9, circulating tumour DNA and circulating tumour cells in patients with solid pancreatic tumours. Br J Cancer. 2017;117(7):1017–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gerlinger M, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366(10):883–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Patel H, et al. Clinical correlates of blood-derived circulating tumor DNA in pancreatic cancer. J Hematol Oncol. 2019;12(1):130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Vietsch EE, van Eijck CH, Wellstein A. Circulating DNA and Micro-RNA in patients with pancreatic cancer. Pancreat Disord Ther. 2015;5(2):156.

    PubMed  PubMed Central  Google Scholar 

  49. Pishvaian MJ, et al. A pilot study evaluating concordance between blood-based and patient-matched tumor molecular testing within pancreatic cancer patients participating in the Know Your Tumor (KYT) initiative. Oncotarget. 2017;8(48):83446–56.

    Article  PubMed  Google Scholar 

  50. Liebs S, et al. Applicability of liquid biopsies to represent the mutational profile of tumor tissue from different cancer entities. Oncogene. 2021;40(33):5204–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fisher R, Pusztai L, Swanton C. Cancer heterogeneity: implications for targeted therapeutics. Br J Cancer. 2013;108(3):479–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dunne RF, Hezel AF. Genetics and biology of pancreatic ductal adenocarcinoma. Hematol Oncol Clin North Am. 2015;29(4):595–608.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Katz MH, et al. Long-term survival after multidisciplinary management of resected pancreatic adenocarcinoma. Ann Surg Oncol. 2009;16(4):836–47.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ballehaninna UK, Chamberlain RS. The clinical utility of serum CA 19-9 in the diagnosis, prognosis and management of pancreatic adenocarcinoma: an evidence based appraisal. J Gastrointest Oncol. 2012;3(2):105–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Hadano N, et al. Prognostic value of circulating tumour DNA in patients undergoing curative resection for pancreatic cancer. Br J Cancer. 2016;115(1):59–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lee B, et al. Circulating tumor DNA as a potential marker of adjuvant chemotherapy benefit following surgery for localized pancreatic cancer. Ann Oncol. 2019;30(9):1472–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yin L, et al. Improved assessment of response status in patients with pancreatic cancer treated with neoadjuvant therapy using somatic mutations and liquid biopsy analysis. Clin Cancer Res. 2021;27(3):740–8.

    Article  CAS  PubMed  Google Scholar 

  58. Gemenetzis G, et al. Circulating tumor cells dynamics in pancreatic adenocarcinoma correlate with disease status: results of the prospective CLUSTER study. Ann Surg. 2018;268(3):408–20.

    Article  PubMed  Google Scholar 

  59. Poruk KE, et al. Circulating tumor cell phenotype predicts recurrence and survival in pancreatic adenocarcinoma. Ann Surg. 2016;264(6):1073–81.

    Article  PubMed  Google Scholar 

  60. Tie J, et al. Circulating tumor DNA analysis detects minimal residual disease and predicts recurrence in patients with stage II colon cancer. Sci Transl Med. 2016;8(346):346ra92.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben George .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Monahan, K., George, B. (2023). Liquid Biopsies for Pancreatic Cancer: Is It Ready for Prime Time?. In: Pant, S. (eds) Pancreatic Cancer. Springer, Cham. https://doi.org/10.1007/978-3-031-38623-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-38623-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-38622-0

  • Online ISBN: 978-3-031-38623-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics