Skip to main content

Probiotics and their Application in Tilapia Culture

  • Chapter
  • First Online:
Novel Approaches Toward Sustainable Tilapia Aquaculture

Abstract

Probiotics are live beneficial bacteria introduced into the gastrointestinal tract through food or water, promoting good health by enhancing the internal microbial balance. Probiotic microbes produce bacteriocins, siderophores, lysozymes, proteases, and hydrogen peroxides, inhibiting the growth of harmful pathogens. Such beneficial bacteria also produce many enzymes such as amylase enzyme by Aeromonas spp., Bacillus subtilis, Bacteridaceae, Clostridium spp., Lactobacillus plantarum, and Staphylococcus sp., and protease and cellulase enzymes by B. subtilis, L. plantarum, and Staphylococcus sp. In aquaculture, probiotics confer several benefits and play important roles in improving growth performances, disease resistance, immunity, health status, intestinal epithelial barrier integrity, gut microbiome, and water quality. In addition, the practical application of probiotics in aquaculture diets could minimize antibiotic side effects. Promoting these feed additives for fish would help to improve their product performance and feed utilization and, therefore, boost fish production and safeguard human health. This review provides updated information regarding definitions, sources of bacterial probiotics, probiotic use in fish diets against pathogenic bacteria, mechanisms of action, beneficial aspects, and potential applications of probiotics in fish. It is anticipated that these will be of significant value for nutritionists, agricultural engineers, researchers, pharmacists, scientists, pharmaceutical industries, and veterinarians.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdelfatah EN, Mahboub HH (2018) Studies on the effect of Lactococcus garvieae of dairy origin on both cheese and Nile tilapia (O. niloticus). Int. J Vet Sci 6(2):201–207

    Google Scholar 

  • Abdel-Latif HM, Dawood MA, Menanteau-Ledouble S, El-Matbouli M (2020) The nature and consequences of co-infections in tilapia: a review. J Fish Dis 6:651–664

    Article  Google Scholar 

  • Addo S, Carrias AA, Williams MA, Liles MR, Terhune JS, Davis DA (2017) Effects of Bacillus subtilis strains on growth, immune parameters, and streptococcus iniae susceptibility in Nile tilapia, Oreochromis niloticus. J World Aquac Soc 48(2):257–267

    Article  CAS  Google Scholar 

  • Adeoye AA, Yomla R, Jaramillo-Torres A, Rodiles A, Merrifield DL, Davies SJ (2016) Combined effects of exogenous enzymes and probiotic on Nile tilapia (Oreochromis niloticus) growth, intestinal morphology and microbiome. Aquac 463:61–70

    Article  CAS  Google Scholar 

  • Akhter N, Wu B, Memon AM, Mohsin M (2015) Probiotics and prebiotics associated with aquaculture: a review. Fish Shellfish Immunol 45(2):733–741

    Article  CAS  PubMed  Google Scholar 

  • Aly SM, Abd-El-Rahman AM, John G, Mohamed MF (2008a) Characterization of some bacteria isolated from Oreochromis niloticus and their potential use as probiotics. Aquaculture 277(1–2):1–6

    Article  Google Scholar 

  • Aly SM, Ahmed YA, Ghareeb AA, Mohamed MF (2008b) Studies on Bacillus subtilis and lactobacillus acidophilus, as potential probiotics, on the immune response and resistance of Tilapia nilotica (Oreochromis niloticus) to challenge infections. Fish Shellfish Immunol 25(1–2):128–136

    Article  CAS  PubMed  Google Scholar 

  • Amin A, Zahra T, Raja H, Amin M, Dilshad E, Naveed M, Ahmed I (2020) Major natural sinks for harboring microorganisms with altered antibiotic resistance versus major human contributing sources of antibiotic resistance: a detailed insight. In: Antibiotics and antimicrobial resistance genes in the environment. Elsevier, pp 70–98

    Chapter  Google Scholar 

  • Amoah K, Huang QC, Tan BP, Zhang S, Chi SY, Yang QH, Liu HY, Dong XH (2019) Dietary supplementation of probiotic Bacillus coagulans ATCC 7050, improves the growth performance, intestinal morphology, microflora, immune response, and disease confrontation of Pacific white shrimp, Litopenaeus vannamei. Fish Shellfish Immunol 87:796–808

    Article  CAS  PubMed  Google Scholar 

  • Assefa A, Abunna F (2018) Maintenance of fish health in aquaculture: review of epidemiological approaches for prevention and control of infectious disease of fish. Vet Med Int 5432497:1

    Article  Google Scholar 

  • Azad MA, Islam SS, Sithi IN, Ghosh AK, Banu GR, Bir J, Huq KA (2019) Effect of probiotics on immune competence of giant freshwater prawn Macrobrachium rosenbergii. Aquac Res 50(2):644–657

    Article  CAS  Google Scholar 

  • Balcázar JL, De Blas I, Ruiz-Zarzuela I, Cunningham D, Vendrell D, Múzquiz JL (2006) The role of probiotics in aquaculture. Vet Microbiol 114(3–4):173–186

    Article  PubMed  Google Scholar 

  • De Bidhan C, Meena DK, Behera BK, Das P, Das Mohapatra PK, Sharma AP (2014) Probiotics in fish and shellfish culture: immunomodulatory and ecophysiological responses. Fish Physiol Biochem 3:921–971

    Google Scholar 

  • Butt UD, Lin N, Akhter N, Siddiqui T, Li S, Wu B (2021) Overview of the latest developments in the role of probiotics, prebiotics and synbiotics in shrimp aquaculture. Fish Shellfish Immunol 114:263–281

    Article  CAS  PubMed  Google Scholar 

  • Caipang CM, Lazado CC (2015) Nutritional impacts on fish mucosa: immunostimulants, pre- and probiotics. In: Mucosal health in aquaculture. Academic Press, pp 211–272

    Chapter  Google Scholar 

  • Chabrillón M, Rico RM, Arijo S, Diaz-Rosales P, Balebona MC, Moriñigo MA (2005) Interactions of microorganisms isolated from gilthead sea bream, Sparus aurata L., on Vibrio harveyi, a pathogen of farmed Senegalese sole, Solea senegalensis (Kaup). J Fish Dis 28(9):531–537

    Article  PubMed  Google Scholar 

  • Chen SW, Liu CH, Hu SY (2019) Dietary administration of probiotic Paenibacillus ehimensis NPUST1 with bacteriocin-like activity improves growth performance and immunity against Aeromonas hydrophila and streptococcus iniae in Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol 84:695–703

    Article  CAS  PubMed  Google Scholar 

  • da Mota FF, Vollú RE, Jurelevicius D, Seldin L (2016) Whole-genome sequence of Rummeliibacillus stabekisii strain PP9 isolated from Antarctic soil. Genome Announc 4(3):e00416–e00416

    PubMed  PubMed Central  Google Scholar 

  • Das A, Nakhro K, Chowdhury S, Kamilya D (2013) Effects of potential probiotic bacillus amyloliquifaciens FPTB16 on systemic and cutaneous mucosal immune responses and disease resistance of catla (Catla catla). Fish Shellfish Immunol 35(5):1547–1553

    Article  CAS  PubMed  Google Scholar 

  • Dawood MA (2021) Nutritional immunity of fish intestines: important insights for sustainable aquaculture. Rev Aquac 13(1):642–663

    Article  Google Scholar 

  • Dawood MA, Abo-Al-Ela HG, Hasan MT (2020) Modulation of transcriptomic profile in aquatic animals: probiotics, prebiotics and synbiotics scenarios. Fish Shellfish Immunol 97:268–282

    Article  CAS  PubMed  Google Scholar 

  • Dawood MA, El Basuini MF, Zaineldin AI, Yilmaz S, Hasan MT, Ahmadifar E, El Asely AM, Abdel-Latif HM, Alagawany M, Abu-Elala NM, Van Doan H (2021) Antiparasitic and antibacterial functionality of essential oils: an alternative approach for sustainable aquaculture. Pathogens 10(2):185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dawood MA, Koshio S (2020) Application of fermentation strategy in aquafeed for sustainable aquaculture. Rev Aquac 12(2):987–1002

    Article  Google Scholar 

  • Dawood MA, Koshio S, Ishikawa M, Yokoyama S (2015) Effects of partial substitution of fish meal by soybean meal with or without heat-killed lactobacillus plantarum (LP20) on growth performance, digestibility, and immune response of amberjack, Seriola dumerili juveniles. Biomed Res Int 2015:1

    Article  Google Scholar 

  • Decamp O, Moriarty DJ, Lavens P (2008) Probiotics for shrimp larviculture: review of field data from Asia and Latin America. Aquac Res 39(4):334–338

    Article  Google Scholar 

  • Denev S, Beev G, Staykov Y, Moutafchieva R (2009) Microbial ecology of the gastrointestinal tract of fish and the potential application of probiotics and prebiotics in finfish aquaculture. Int Aquat Res 1(1):1–29

    Google Scholar 

  • Dorji N, Yamazaki S, Thinley P (2022) Productivity improvement to sustain small-scale fish production in developing countries: the case of Bhutan. Aquac 548:737612

    Article  Google Scholar 

  • Duan Y, Dong H, Wang Y, Zhang Y, Zhang J (2018) Effects of the dietary probiotic clostridium butyricum on intestine digestive and metabolic capacities, SCFA content and body composition in Marsupenaeus japonicus. J Ocean Univ China 17(3):690–696

    Article  CAS  Google Scholar 

  • Duan Y, Zhang Y, Dong H, Wang Y, Zhang J (2017) Effect of the dietary probiotic clostridium butyricum on growth, intestine antioxidant capacity and resistance to high temperature stress in kuruma shrimp Marsupenaeus japonicus. J Therm Biol 66:93–100

    Article  CAS  PubMed  Google Scholar 

  • Duc LH, Hong HA, Barbosa TM, Henriques AO, Cutting SM (2004) Characterization of bacillus probiotics available for human use. Appl Environ Microbiol 70(4):2161–2171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eissa N, Wang HP, Yao H, Abou-ElGheit E (2018) Mixed bacillus species enhance the innate immune response and stress tolerance in yellow perch subjected to hypoxia and air- exposure stress. Sci Rep 8(1):1–0

    Article  Google Scholar 

  • El-Saadony MT, Alagawany M, Patra AK, Kar I, Tiwari R, Dawood MA, Dhama K, Abdel- Latif HM (2021) The functionality of probiotics in aquaculture: an overview fish. Shellfish Immunol 117:36–52

    Article  Google Scholar 

  • Elsabagh M, Mohamed R, Moustafa EM, Hamza A, Farrag F, Decamp O, Dawood MA, Eltholth M (2018) Assessing the impact of bacillus strains mixture probiotic on water quality, growth performance, blood profile and intestinal morphology of Nile tilapia, Oreochromis niloticus. Aquac Nutr 6:1613–1622

    Article  Google Scholar 

  • England PH (2014) UK standards for microbiology investigations. Investigations of Faecal specimens for enteric pathogens. Public Health England, London

    Google Scholar 

  • FAO (2018) The state of world fisheries and aquaculture meeting the sustainable development goals. Rome. Licence: CC BY-NC-SA 3.0 IGO

    Google Scholar 

  • FAO (2020) The state of world fisheries and aquaculture (SOFIA), in: F.a.A.O.o.t.U. Nations (Ed.) FAO, Rome, Italy

    Google Scholar 

  • FAO/WHO (2001) Health and nutritional properties of probiotics in food including powder milk with liver lactic acid bacteria, Food and Agriculture Organization and World Health Organization Joint report p. 34

    Google Scholar 

  • Frouël S, Le Bihan E, Serpentini A, Lebel JM, Koueta N, Nicolas JL (2008) Preliminary study of the effects of commercial lactobacilli preparations on digestive metabolism of juvenile sea bass (Dicentrarchus labrax). Microb Physiol 14(1–3):100–106

    Article  Google Scholar 

  • Gāliņa D, Ansonska L, Valdovska A (2020) Effect of probiotics and herbal products on intestinal histomorphological and immunological development in piglets. Vet Med Int 24:2020

    Google Scholar 

  • Gao Q, Xiao C, Min M, Zhang C, Peng S, Shi Z (2016) Effects of probiotics dietary supplementation on growth performance, innate immunity and digestive enzymes of silver pomfret, Pampus argenteus. Indian J Anim Res 50(6):936–941

    Google Scholar 

  • Gao QX, Shi ZH, Peng SM (2013) Probiotics in aquaculture: recent progress and outlook. Mar Fish Rev 35(3):364–372

    Google Scholar 

  • Gebremedhin S, Bruneel S, Getahun A, Anteneh W, Goethals P (2021) Scientific methods to understand fish population dynamics and support sustainable fisheries management. Water 13(4):574

    Article  Google Scholar 

  • Ghosh AK, Panda SK, Luyten W (2021) Anti-vibrio and immune-enhancing activity of medicinal plants in shrimp: a comprehensive review. Fish Shellfish Immunol 117:192–210

    Article  CAS  PubMed  Google Scholar 

  • Giri SS, Sukumaran V, Oviya M (2013) Potential probiotic lactobacillus plantarum VSG3 improves the growth, immunity, and disease resistance of tropical freshwater fish, Labeo rohita. Fish Shellfish Immunol 34(2):660–666

    Article  CAS  PubMed  Google Scholar 

  • Gobi N, Vaseeharan B, Chen JC, Rekha R, Vijayakumar S, Anjugam M, Iswarya A (2018) Dietary supplementation of probiotic bacillus licheniformis Dahb1 improves growth performance, mucus and serum immune parameters, antioxidant enzyme activity as well as resistance against Aeromonas hydrophila in tilapia Oreochromis mossambicus. Fish Shellfish Immunol 74:501–508

    Article  CAS  PubMed  Google Scholar 

  • Gram L, Løvold T, Nielsen J, Melchiorsen J, Spanggaard B (2001) In vitro antagonism of the probiont Pseudomonas fluorescens strain AH2 against Aeromonas salmonicida does not confer protection of salmon against furunculosis. Aquaculture 199(1–2):1–1

    Article  Google Scholar 

  • Gram L, Melchiorsen J, Spanggaard B, Huber I, Nielsen TF (1999) Inhibition of vibrio anguillarum by Pseudomonas fluorescens AH2, a possible probiotic treatment of fish. AEM 65(3):969–973

    Article  CAS  Google Scholar 

  • Guardiola FA, Bahi A, Bakhrouf A, Esteban MA (2017) Effects of dietary supplementation with fenugreek seeds, alone or in combination with probiotics, on gilthead seabream (Sparus aurata L.) skin mucosal immunity. Fish Shellfish Immunol 65:169–178

    Article  CAS  PubMed  Google Scholar 

  • Guardone L, Tinacci L, Armani A, Trevisani M (2022) Residues of veterinary drugs in fish and fish products: an analysis of RASFF data over the last 20 years. Food Control 1(135):108780

    Article  Google Scholar 

  • Gutowska MA, Drazen JC, Robison BH (2004) Digestive chitinolytic activity in marine fishes of Monterey Bay, California. Comparative biochemistry and physiology part a. Comp Biochem Physiol 139(3):351–358

    Article  Google Scholar 

  • He RP, Feng J, Tian XL, Dong SL, Wen B (2017) Effects of dietary supplementation of probiotics on the growth, activities of digestive and non-specific immune enzymes in hybrid grouper (Epinephelus lanceolatus♂× Epinephelus fuscoguttatus♀). Aquac Res 48(12):5782–5790

    Article  CAS  Google Scholar 

  • Henriksson PJ, Rico A, Troell M, Klinger DH, Buschmann AH, Saksida S, Chadag MV, Zhang W (2018) Unpacking factors influencing antimicrobial use in global aquaculture and their implication for management: a review from a systems perspective. Sustain Sci 13(4):1105–1120

    Article  PubMed  Google Scholar 

  • Hernández-Contreras Á, Hernández MD (2020) Application of aromatic plants and their extracts in aquaculture. In: Feed additives. Academic Press, pp 239–259

    Chapter  Google Scholar 

  • Hostins B, Lara G, Decamp O, Cesar DE, Wasielesky W Jr (2017) Efficacy and variations in bacterial density in the gut of Litopenaeus vannamei reared in a BFT system and in clear water supplemented with a commercial probiotic mixture. Aquaculture 480:58–64

    Article  CAS  Google Scholar 

  • Irianto A, Austin B (2002) Probiotics in aquaculture. J Fish Dis 25(11):633–642

    Article  Google Scholar 

  • Jahangiri L, Esteban MÁ (2018) Administration of probiotics in the water in finfish aquaculture systems: a review. Aust Fish 3(3):33

    Article  Google Scholar 

  • Junghare M, Subudhi S, Lal B (2012) Improvement of hydrogen production under decreased partial pressure by newly isolated alkaline tolerant anaerobe, clostridium butyricum TM-9A: optimization of process parameters. Int J Hydrog Energy 37(4):3160–3168

    Article  CAS  Google Scholar 

  • Kelly C, Salinas I (2017) Under pressure: interactions between commensal microbiota and the teleost immune system. Front Immunol 8:559

    Article  PubMed  PubMed Central  Google Scholar 

  • Kent AG, Vill AC, Shi Q, Satlin MJ, Brito IL (2020) Widespread transfer of mobile antibiotic resistance genes within individual gut microbiomes revealed through bacterial hi-C. Nat Commun 11(1):1–9

    Article  Google Scholar 

  • Koch N, Islam NF, Sonowal S, Prasad R, Sarma H (2021) Environmental antibiotics and resistance genes as emerging contaminants: methods of detection and bioremediation. Curr Res Microb Sci 1(2):100027

    Google Scholar 

  • Kuebutornye FK, Abarike ED, Lu Y, Hlordzi V, Sakyi ME, Afriyie G, Wang Z, Li Y, Xie CX (2020a) Mechanisms and the role of probiotic bacillus in mitigating fish pathogens in aquaculture. Fish Physiol Biochem 46(3):819–841

    Article  CAS  PubMed  Google Scholar 

  • Kuebutornye FK, Lu Y, Abarike ED, Wang Z, Li Y, Sakyi ME (2020b) In vitro assessment of the probiotic characteristics of three bacillus species from the gut of Nile tilapia, Oreochromis niloticus. Probiotics Antimicrob 12(2):412–424

    Article  CAS  Google Scholar 

  • Kuebutornye FK, Wang Z, Lu Y, Abarike ED, Sakyi ME, Li Y, Xie CX, Hlordzi V (2020c) Effects of three host-associated bacillus species on mucosal immunity and gut health of Nile tilapia, Oreochromis niloticus and its resistance against Aeromonas hydrophila infection. Fish Shellfish Immunol 97:83–95

    Article  CAS  PubMed  Google Scholar 

  • Kumar YA, Singh PK, Singh AK, Masih HA, Peter KJ, Benjamin JC, Rath S (2014) Production optimization of alpha amylase from Bacillus altitudinis. Int J Sci Eng Technol Res 3(4):654–673

    Google Scholar 

  • La Ragione RM, Narbad A, Gasson MJ, Woodward MJ (2004) In vivo characterization of lactobacillus johnsonii FI9785 for use as a defined competitive exclusion agent against bacterial pathogens in poultry. Lett Appl Microbiol 38(3):197–205

    Article  PubMed  Google Scholar 

  • La Ragione RM, Woodward MJ (2003) Competitive exclusion by Bacillus subtilis spores of salmonella enterica serotype Enteritidis and Clostridium perfringens in young chickens. Vet Microbio 94(3):245–256

    Article  Google Scholar 

  • Lategan MJ, Torpy FR, Gibson LF (2004) Control of saprolegniosis in the eel Anguilla australis Richardson, by Aeromonas media strain A199. Aquaculture 240(1–4):19–27

    Article  Google Scholar 

  • Lazado CC, Caipang CM (2014) Mucosal immunity and probiotics in fish. Fish Shellfish Immunol 39(1):78–89

    Article  CAS  PubMed  Google Scholar 

  • Lerminiaux NA, Cameron AD (2019) Horizontal transfer of antibiotic resistance genes in clinical environments. Can J Microbiol 65(1):34–44

    Article  CAS  PubMed  Google Scholar 

  • Lesel R (1990) Microbiology in poecilotherms. InInternational Symposium on Microbiology in Poecilotherms (1989: Paris, France) sole distributors for the USA and Canada, Elsevier Science Pub. Co

    Google Scholar 

  • Liang J, Zhang M, Wang X, Ren Y, Yue T, Wang Z, Gao Z (2021) Edible fungal polysaccharides, the gut microbiota, and host health. Carbohydr Polym 1(273):118558

    Article  Google Scholar 

  • Liao X, Wu R, Ma G, Zhao L, Zheng Z, Zhang R (2015a) Effects of clostridium butyricum on antioxidant properties, meat quality and fatty acid composition of broiler birds. Lipids Health Dis 14(1):1–9

    Article  CAS  Google Scholar 

  • Liao XD, Ma G, Cai J, Fu Y, Yan XY, Wei XB, Zhang RJ (2015b) Effects of clostridium butyricum on growth performance, antioxidation, and immune function of broilers. Poult Sci 94(4):662–667

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Wang S, Cai Y, Guo X, Cao Z, Zhang Y, Liu S, Yuan W, Zhu W, Zheng YU, Xie Z (2017) Dietary administration of Bacillus subtilis HAINUP40 enhances growth, digestive enzyme activities, innate immune responses and disease resistance of tilapia, Oreochromis niloticus. Fish Shellfish Immunol 60:326–333

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Zeng D, Yang M, Wen B, Lai J, Zhou Y, Sun H, Xiong L, Wang J, Lin Y, Pan K (2019) Probiotic clostridium butyricum improves the growth performance, immune function, and gut microbiota of weaning rex rabbits. Probiotics Antimicrob 11(4):1278–1292

    Article  CAS  Google Scholar 

  • Liu Y, Jia Y, Liu C, Ding L, Xia Z (2018) RNA-Seq transcriptome analysis of breast muscle in Pekin ducks supplemented with the dietary probiotic clostridium butyricum. BMC Genomics 19(1):1–4

    Article  CAS  Google Scholar 

  • Makled SO, Hamdan AM, El-Sayed AF (2019) Effects of dietary supplementation of a marine thermotolerant bacterium, bacillus paralicheniformis SO-1, on growth performance and immune responses of Nile tilapia, Oreochromis niloticus. Aquac Nutr 25(4):817–827

    Article  CAS  Google Scholar 

  • Midhun SJ, Neethu S, Arun D, Vysakh A, Divya L, Radhakrishnan EK, Jyothis M (2019) Dietary supplementation of bacillus licheniformis HGA8B improves growth parameters, enzymatic profile and gene expression of Oreochromis niloticus. Aquaculture 505:289–296

    Article  CAS  Google Scholar 

  • Monteagudo-Mera A, Rastall RA, Gibson GR, Charalampopoulos D, Chatzifragkou A (2019) Adhesion mechanisms mediated by probiotics and prebiotics and their potential impact on human health. Appl Microbiol Biotechnol 103(16):6463–6472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montes AJ (1993) The use of probiotics in food-animal practice. Vet Med 88:282–289

    Google Scholar 

  • Nayak SK (2010) Probiotics and immunity: a fish perspective. Fish Shellfish Immunol 29(1):2–14

    Article  CAS  PubMed  Google Scholar 

  • Nayak SK, Swain P, Mukherjee SC (2007) Effect of dietary supplementation of probiotic and vitamin C on the immune response of Indian major carp, Labeo rohita (ham.). Fish Shellfish Immunol 23(4):892–896

    Article  CAS  PubMed  Google Scholar 

  • Noor Z, Noor M, Khan I, Khan SA (2020) Evaluating the lucrative role of probiotics in the aquaculture using microscopic and biochemical techniques. Microsc Res Tech 83(3):310–317

    Article  CAS  PubMed  Google Scholar 

  • Okocha RC, Olatoye IO, Adedeji OB (2018) Food safety impacts of antimicrobial use and their residues in aquaculture. Public Health Rev 39(1):1–22

    Article  Google Scholar 

  • Pan X, Wu T, Song Z, Tang H, Zhao Z (2008) Immune responses and enhanced disease resistance in Chinese drum, Miichthys miiuy (Basilewsky), after oral administration of live or dead cells of clostridium butyrium CB2. J Fish Dis 31(9):679–686

    Article  CAS  PubMed  Google Scholar 

  • Panigrahi A, Kiron V, Satoh S, Watanabe T (2010) Probiotic bacteria lactobacillus rhamnosus influences the blood profile in rainbow trout Oncorhynchus mykiss (Walbaum). Fish Physiol Biochem 36(4):969–977

    Article  CAS  PubMed  Google Scholar 

  • Pepi M, Focardi S (2021) Antibiotic-resistant bacteria in aquaculture and climate change: a challenge for health in the Mediterranean area. IJERPH 18(11):5723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-Sánchez T, Ruiz-Zarzuela I, de Blas I, Balcázar JL (2014) Probiotics in aquaculture: a current assessment. Rev Aquac 6(3):133–146

    Article  Google Scholar 

  • Pirarat N, Kobayashi T, Katagiri T, Maita M, Endo M (2006) Protective effects and mechanisms of a probiotic bacterium lactobacillus rhamnosus against experimental Edwardsiella tarda infection in tilapia (Oreochromis niloticus). Vet Immunol Immunopathol 113(3–4):339–347

    Article  CAS  PubMed  Google Scholar 

  • Poolsawat L, Li X, He M, Ji D, Leng X (2020) Clostridium butyricum as probiotic for promoting growth performance, feed utilization, gut health and microbiota community of tilapia (Oreochromis niloticus× O. aureus). Aquac Nutr 26(3):657–670

    Article  CAS  Google Scholar 

  • Ramos MA, Batista S, Pires MA, Silva AP, Pereira LF, Saavedra MJ, Ozório RO, Rema P (2017) Dietary probiotic supplementation improves growth and the intestinal morphology of Nile tilapia. Animal 11(8):1259–1269

    Article  CAS  PubMed  Google Scholar 

  • Reda RM, Selim KM (2015) Evaluation of bacillus amyloliquefaciens on the growth performance, intestinal morphology, hematology and body composition of Nile tilapia, Oreochromis niloticus. Aquac Int 23(1):203–217

    Article  CAS  Google Scholar 

  • Reverter M, Sarter S, Caruso D, Avarre JC, Combe M, Pepey E, Pouyaud L, Vega-Heredía S, De Verdal H, Gozlan RE (2020) Aquaculture at the crossroads of global warming and antimicrobial resistance. Nat Commun 11(1):1–8

    Article  Google Scholar 

  • Ringø E, Doan HV, Lee S, Song SK (2020) Lactic acid bacteria in shellfish: possibilities and challenges. Rev Fish Sci Aquac 28(2):139–169

    Article  Google Scholar 

  • Rohani MF, Islam SM, Hossain MK, Ferdous Z, Siddik MA, Nuruzzaman M, Padeniya U, Brown C, Shahjahan M (2021) Probiotics, prebiotics and synbiotics improved the functionality of aquafeed: upgrading growth, reproduction, immunity and disease resistance in fish fish shellfish Immunol

    Google Scholar 

  • Sáenz de Rodrigáñez MA, Díaz-Rosales P, Chabrillón M, Smidt H, Arijo S, León-Rubio JM, Alarcón FJ, Balebona MC, Moriñigo MA, Cara JB, Moyano FJ (2009) Effect of dietary administration of probiotics on growth and intestine functionality of juvenile Senegalese sole (Solea senegalensis, Kaup 1858). Aquac Nutr 15(2):177–185

    Article  Google Scholar 

  • Sankar H, Philip B, Philip R, Singh IS (2017) Effect of probiotics on digestive enzyme activities and growth of cichlids, Etroplus suratensis (pearl spot) and Oreochromis mossambicus (tilapia). Aquac Nutr 23(4):852–864

    Article  CAS  Google Scholar 

  • Santos L, Ramos F (2018) Antimicrobial resistance in aquaculture: current knowledge and alternatives to tackle the problem. IJAA 52(2):135–143

    CAS  Google Scholar 

  • Selim KM, Reda RM (2015) Improvement of immunity and disease resistance in the Nile tilapia, Oreochromis niloticus, by dietary supplementation with bacillus amyloliquefaciens. Fish Shellfish Immunol 44(2):496–503

    Article  CAS  PubMed  Google Scholar 

  • Shao Y, Wang Y, Yuan Y, Xie Y (2021) A systematic review on antibiotics misuse in livestock and aquaculture and regulation implications in China. Sci Total Environ 1(798):149205

    Article  Google Scholar 

  • Silva EF, Soares MA, Calazans NF, Vogeley JL, de Valle BC, Soares R, Peixoto S (2012) Effect of probiotic (bacillus spp.) addition during larvae and postlarvae culture of the white shrimp Litopenaeus vannamei. Aquac Res 44(1):13–21

    Article  Google Scholar 

  • Silva TF, Petrillo TR, Yunis-Aguinaga J, Marcusso PF, da Silva CG, de Moraes FR, de Moraes JR (2015) Effects of the probiotic bacillus amyloliquefaciens on growth performance, hematology and intestinal morphometry in cage-reared Nile tilapia. Lat Am J Aquat Res 43(5):963–971

    Article  Google Scholar 

  • Sookchaiyaporn N, Srisapoome P, Unajak S, Areechon N (2020) Efficacy of bacillus spp. isolated from Nile tilapia Oreochromis niloticus Linn. On its growth and immunity, and control of pathogenic bacteria. Fish Sci 86(2):353–365

    Article  CAS  Google Scholar 

  • Srisapoome P, Areechon N (2017) Efficacy of viable Bacillus pumilus isolated from farmed fish on immune responses and increased disease resistance in Nile tilapia (Oreochromis niloticus): laboratory and on-farm trials. Fish Shellfish Immunol 67:199–210

    Article  CAS  PubMed  Google Scholar 

  • Stevens CH, Croft DP, Paull GC, Tyler CR (2017) Stress and welfare in ornamental fishes: what can be learned from aquaculture? J Fish Biol 2:409–428

    Article  Google Scholar 

  • Sun YZ, Yang HL, Ma RL, Lin WY (2010) Probiotic applications of two dominant gut bacillus strains with antagonistic activity improved the growth performance and immune responses of grouper Epinephelus coioides. Fish Shellfish Immunol 29(5):803–809

    Article  PubMed  Google Scholar 

  • Suprayudi MA, Maeda M, Hidayatullah H, Widanarni W, Setiawati M, Ekasari J (2017) The positive contributions of PowerLac™ supplementation to the production performance, feed utilization and disease resistance of Nile tilapia Oreochromis niloticus (L.). Aquac Res 48(5):2145–2156

    Article  CAS  Google Scholar 

  • Sutthi N, Thaimuangphol W, Rodmongkoldee M, Leelapatra W, Panase P (2018) Growth performances, survival rate, and biochemical parameters of Nile tilapia (Oreochromis niloticus) reared in water treated with probiotic. Comp Clin Path 27(3):597–603

    Article  CAS  Google Scholar 

  • Suzer C, Çoban D, Kamaci HO, Saka Ş, Firat K, Otgucuoğlu Ö, Küçüksari H (2008) Lactobacillus spp. bacteria as probiotics in gilthead sea bream (Sparus aurata, L.) larvae: effects on growth performance and digestive enzyme activities. Aquaculture 280(1–4):140–150

    Article  CAS  Google Scholar 

  • Tan HY, Chen SW, Hu SY (2019) Improvements in the growth performance, immunity, disease resistance, and gut microbiota by the probiotic Rummeliibacillus stabekisii in Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol 92:265–275

    Article  CAS  PubMed  Google Scholar 

  • Terpou A, Papadaki A, Lappa IK, Kachrimanidou V, Bosnea LA, Kopsahelis N (2019) Probiotics in food systems: significance and emerging strategies towards improved viability and delivery of enhanced beneficial value. Nutrients 11(7):1591

    Article  CAS  PubMed  Google Scholar 

  • Thite VS, Nerurkar AS, Baxi NN (2020) Optimization of concurrent production of xylanolytic and pectinolytic enzymes by bacillus safensis M35 and Bacillus altitudinis J208 using agro-industrial biomass through response surface methodology. Sci Rep 10(1):1–2

    Article  Google Scholar 

  • Tinh NT, Dierckens K, Sorgeloos P, Bossier P (2008) A review of the functionality of probiotics in the larviculture food chain mar. Biotechnol 10(1):1–2

    CAS  Google Scholar 

  • Vaishampayan P, Miyashita M, Ohnishi A, Satomi M, Rooney A, La Duc MT, Venkateswaran K (2009) Description of Rummeliibacillus stabekisii gen. Nov., sp. nov. and reclassification of Bacillus pycnus Nakamura et al. 2002 as Rummeliibacillus pycnus comb. nov. Int J Syst Evol Microbiol 59(5):1094–1099

    Article  CAS  PubMed  Google Scholar 

  • Vaiyapuri M, Pailla S, Rao Badireddy M, Pillai D, Chandragiri Nagarajarao R, Prasad Mothadaka M (2021) Antimicrobial resistance in Vibrios of shrimp aquaculture: incidence, identification schemes, drivers and mitigation measures. Aquac Res 52(7):2923–2941

    Article  CAS  Google Scholar 

  • Van Doan H, Hoseinifar SH, Khanongnuch C, Kanpiengjai A, Unban K, Srichaiyo S (2018) Host-associated probiotics boosted mucosal and serum immunity, disease resistance and growth performance of Nile tilapia (Oreochromis niloticus). Aquaculture 491:94–100

    Article  Google Scholar 

  • Van Doan H, Lumsangkul C, Jaturasitha S, Meidong R, Hoseinifar SH, Dawood MA (2021a) Modulation of growth, skin mucus and serum immunities, and disease resistance of Nile tilapia fed host-associated probiotic (lactobacillus paracasei l61-27b). Aquac Nutr 27:3–12

    Article  Google Scholar 

  • Van Doan H, Lumsangkul C, Ruangwong OU, Meidong R, Hoseinifar SH, Dawood MA, Azra MN, Jatursitha S, Carnevali O (2021b) Effects of host-associated probiotic Bacillus altitudinis B61-34b on growth performance, immune response and disease resistance of Nile tilapia (Oreochromis niloticus) raised under biofloc system. Aquac Nutr 27:61–72

    Article  Google Scholar 

  • Van Doan H, Wangkahart E, Thaimuangphol W, Panase P, Sutthi N (2021c) Effects of bacillus spp. mixture on growth, immune responses, expression of immune-related genes, and resistance of Nile tilapia against Streptococcus agalactiae infection. Probiotics Antimicrob 1:1–6

    Google Scholar 

  • Verschuere L, Rombaut G, Sorgeloos P, Verstraete W (2000) Probiotic bacteria as biological control agents in aquaculture. MMBR 64(4):655–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vine NG, Leukes WD, Kaiser H (2004) In vitro growth characteristics of five candidate aquaculture probiotics and two fish pathogens grown in fish intestinal mucus. FEMS Microbiol Lett 231(1):145–152

    Article  CAS  PubMed  Google Scholar 

  • Vine NG, Leukes WD, Kaiser H (2006) Probiotics in marine larviculture. FEMS Microbiol Rev 30(3):404–427

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Chuprom J, Wang Y, Fu L (2020) Beneficial bacteria for aquaculture: nutrition, bacteriostasis and immunoregulation. J Appl Microbiol 128(1):28–40

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Liu G, Lu M, Ke X, Liu Z, Gao F, Cao J, Zhu H, Yi M, Yu D (2017) Effect of Bacillus cereus as a water or feed additive on the gut microbiota and immunological parameters of Nile tilapia. Aquac Res 48(6):3163–3173

    Article  CAS  Google Scholar 

  • Wang YB, Tian ZQ, Yao JT, Li WF (2008) Effect of probiotics, Enteroccus faecium, on tilapia (Oreochromis niloticus) growth performance and immune response. Aquaculture 277(3–4):203–207

    Article  Google Scholar 

  • Westerdahl AL, Olsson JC, Kjelleberg ST, Conway PL (1991) Isolation and characterization of turbot (Scophtalmus maximus)-associated bacteria with inhibitory effects against vibrio anguillarum. Appl Environ Microbiol 57(8):2223–2228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Won S, Hamidoghli A, Choi W, Park Y, Jang WJ, Kong IS, Bai SC (2020) Effects of Bacillus subtilis WB60 and Lactococcus lactis on growth, immune responses, histology and gene expression in Nile tilapia, Oreochromis niloticus. Microorganisms 8(1)

    Google Scholar 

  • Xia Y, Cao J, Wang M, Lu M, Chen G, Gao F, Liu Z, Zhang D, Ke X, Yi M (2019) Effects of Lactococcus lactis subsp. lactis JCM5805 on colonization dynamics of gut microbiota and regulation of immunity in early ontogenetic stages of tilapia. Fish Shellfish Immunol 86:53–63

    Article  CAS  PubMed  Google Scholar 

  • Xia Y, Lu M, Chen G, Cao J, Gao F, Wang M, Liu Z, Zhang D, Zhu H, Yi M (2018) Effects of dietary lactobacillus rhamnosus JCM1136 and Lactococcus lactis subsp. lactis JCM5805 on the growth, intestinal microbiota, morphology, immune response and disease resistance of juvenile Nile tilapia, Oreochromis niloticus. Fish Shellfish Immunol 76:368–379

    Article  CAS  PubMed  Google Scholar 

  • Yanbo W, Zirong X (2006) Effect of probiotics for common carp (Cyprinus carpio) based on growth performance and digestive enzyme activities. Anim Feed Sci Technol 127(3–4):283–292

    Article  Google Scholar 

  • Yang HL, Xia HQ, Ye YD, Zou WC, Sun YZ (2014) Probiotic Bacillus pumilus SE5 shapes the intestinal microbiota and mucosal immunity in grouper Epinephelus coioides. Dis Aquat Org 111(2):119–127

    Article  CAS  Google Scholar 

  • Yin R, Zhai Q, Yu L, Xiao Y, Wang G, Yu R, Tian F, Chen W (2016) The binding characters study of lead removal by lactobacillus plantarum CCFM8661. Eur Food Res Technol 242(10):1621–1629

    Article  CAS  Google Scholar 

  • Zaineldin AI, Hegazi S, Koshio S, Ishikawa M, Dawood MA, Dossou S, Yukun Z, Mzengereza K (2021) Singular effects of Bacillus subtilis C-3102 or Saccharomyces cerevisiae type 1 on the growth, gut morphology, immunity, and stress resistance of red sea bream (Pagrus major). Ann AnI Sci 21(2):589–608

    Article  CAS  Google Scholar 

  • Zalewska M, Błażejewska A, Czapko A, Popowska M (2021) Antibiotics and antibiotic resistance genes in animal manure–consequences of its application in agriculture. Front Microbiol 640

    Google Scholar 

  • Zhai Q, Wang H, Tian F, Zhao J, Zhang H, Chen W (2017a) Dietary lactobacillus plantarum supplementation decreases tissue lead accumulation and alleviates lead toxicity in Nile tilapia (Oreochromis niloticus). Aquac Res 48(9):5094–5103

    Article  CAS  Google Scholar 

  • Zhai Q, Yu L, Li T, Zhu J, Zhang C, Zhao J, Zhang H, Chen W (2017b) Effect of dietary probiotic supplementation on intestinal microbiota and physiological conditions of Nile tilapia (Oreochromis niloticus) under waterborne cadmium exposure. Antonie Van Leeuwenhoek 110(4):501–513

    Article  CAS  PubMed  Google Scholar 

  • Zhang CN, Li XF, Xu WN, Jiang GZ, Lu KL, Wang LN, Liu WB (2013) Combined effects of dietary fructooligosaccharide and bacillus licheniformis on innate immunity, antioxidant capability and disease resistance of triangular bream (Megalobrama terminalis). Fish Shellfish Immunol 35(5):1380–1386

    Article  CAS  PubMed  Google Scholar 

  • Zhang CN, Zhang JL, Guan WC, Zhang XF, Guan SH, Zeng QH, Cheng GF, Cui W (2017) Effects of lactobacillus delbrueckii on immune response, disease resistance against Aeromonas hydrophila, antioxidant capability and growth performance of Cyprinus carpio Huanghe var. Fish Shellfish Immunol 68:84–91

    Article  CAS  PubMed  Google Scholar 

  • Zhang CX, Wang HY, Chen TX (2019a) Interactions between intestinal microflora/probiotics and the immune system. Biomed Res Int 6764919:1

    Google Scholar 

  • Zhang D, Gao Y, Ke X, Yi M, Liu Z, Han X, Shi C, Lu M (2019b) Bacillus velezensis LF01: in vitro antimicrobial activity against fish pathogens, growth performance enhancement, and disease resistance against streptococcosis in Nile tilapia (Oreochromis niloticus). Appl Microbiol Biotechnol 103(21):9023–9035

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Cao GT, Zeng XF, Zhou L, Ferket PR, Xiao YP, Chen AG, Yang CM (2014) Effects of clostridium butyricum on growth performance, immune function, and cecal microflora in broiler chickens challenged with Escherichia coli K88. Poult Sci 93(1):46–53

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Tian Z, Wang Y, Li W (2010) Effect of treatment with probiotics as water additives on tilapia (Oreochromis niloticus) growth performance and immune response. Fish Physiol Biochem 36(3):501–509

    Article  CAS  PubMed  Google Scholar 

  • Zhu C, Yu L, Liu W, Jiang M, He S, Yi G, Wen H, Liang X (2019) Dietary supplementation with Bacillus subtilis LT3-1 enhance the growth, immunity and disease resistance against Streptococcus agalactiae infection in genetically improved farmed tilapia, Oreochromis niloticus. Aquac Nutr 25(6):1241–1249

    Article  CAS  Google Scholar 

  • Zorriehzahra MJ, Delshad ST, Adel M, Tiwari R, Karthik K, Dhama K, Lazado CC (2016) Probiotics as beneficial microbes in aquaculture: an update on their multiple modes of action: a review. Vet Q 36(4):228–241

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Van Doan, H. (2023). Probiotics and their Application in Tilapia Culture. In: Hoseinifar, S.H., Van Doan, H. (eds) Novel Approaches Toward Sustainable Tilapia Aquaculture. Applied Environmental Science and Engineering for a Sustainable Future. Springer, Cham. https://doi.org/10.1007/978-3-031-38321-2_5

Download citation

Publish with us

Policies and ethics